YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3)

简介: YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3)

一、本文介绍

这篇文章主要给大家讲解如何在多个位置替换可变形卷积,它有三个版本分别是DCNv1、DCNv2、DCNv3,在本篇博文中会分别进行介绍同时进行对比,通过本文你可以学会在YOLOv8中各个位置添加可变形卷积包括(DCNv1、DCNv2、DCNv3),可替换的位置包括->替换C2f中的卷积、DarknetBottleneck中的卷积、主干网络(Backbone)中的卷积等多个位置,本文通过实战的角度进行分析,利用二分类数据集检测飞机为案例,训练结果,通过分析mAP、Loss、Recall等评估指标评估变形卷积的效果,在讲解的过程中有一部分知识点内容来自于论文,也有一部分是我个人的总结内容。

适用对象->适合魔改YOLOv8尝试多位置修改发表论文的用户

适用检测目标->各种类型的目标检测对象

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、概念介绍

首先我们先来介绍一个大的概念DCN全称为Deformable Convolutional Networks,翻译过来就是可变形卷积的意思,其是一种用于目标检测和图像分割的卷积神经网络模块,通过引入可变形卷积操作来提升模型对目标形变的建模能力。

什么是可变形卷积?我们看下图来看一下就了解了。

image.png

上图中展示了标准卷积和可变形卷积中的采样位置。在标准卷积(a)中,采样位置按照规则的网格形式排列(绿色点)。这意味着卷积核在进行卷积操作时,会在输入特征图的规则网格位置上进行采样。

而在可变形卷积(b)中,采样位置是通过引入偏移量进行变形的(深蓝色点),并用增强的偏移量(浅蓝色箭头)进行表示。这意味着在可变形卷积中,不再局限于规则的网格位置,而是可以根据需要在输入特征图上自由地进行采样。

通过引入可变形卷积,可以推广各种变换,例如尺度变换、(异向)长宽比和旋转等变换,这在(c)和(d)中进行了特殊情况的展示。这说明可变形卷积能够更灵活地适应不同类型的变换,从而增强了模型对目标形变的建模能力。

总之,标准卷积(规则采样)在进行卷积操作时按照规则网格位置进行采样,而可变形卷积通过引入偏移量来实现非规则采样,从而在形状变换(尺度、长宽比、旋转等)方面具有更强的泛化能力。

下面是一个三维的角度来分析大家应该会看的更直观。

image.png

其中左侧的是输入特征,右侧的是输出特征,我们的卷积核大小是一个3x3的,我们将输入特征中3x3区域映射为输出特征中的1x1,问题就在于这个3x3的区域怎么选择,传统的卷积就是规则的形状,可变形卷积就是在其中加入一个偏移量,然后对于个每个点分别计算,然后改变3x3区域中每个点的选取,提取一些可能具有更丰富特征的点,从而提高检测效果。

下面我们来看一下在实际检测效果中,可变形卷积的效果,下面的图片分别为大物体、中物体、小物体检测,其中红色的部分就是我们提取出来的特征。

image.png

图中的每个图像三元组展示了三个级别的3×3可变形滤波器的采样位置(每个图像中有729个红色点),以及分别位于背景(左侧)、小物体(中间)和大物体(右侧)上的三个激活单元(绿色点)。

这个图示的目的是说明在不同的物体尺度上,可变形卷积中的采样位置如何变化。在左侧的背景图像中,可变形滤波器的采样位置主要集中在图像的背景部分。在中间的小物体图像中,采样位置的焦点开始向小物体的位置移动,并在小物体周围形成更密集的采样点。在右侧的大物体图像中,采样位置进一步扩展并覆盖整个大物体,以更好地捕捉其细节和形变。

通过这些图示,我们可以观察到可变形卷积的采样位置可以根据不同的目标尺度自适应地调整,从而在不同尺度的物体上更准确地捕捉特征。这增强了模型对于不同尺度目标的感知能力,并使其更适用于不同尺度物体的检测任务,这也是为什么开头的地方我说了本文适合于各种目标的检测对象。

image.png


上图可能可能更加直观一些。

目录
相关文章
|
机器学习/深度学习 数据可视化 计算机视觉
YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)
YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)
801 0
|
机器学习/深度学习 并行计算 算法
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
YOLOv8改进 | 卷积篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)
1341 0
|
8月前
|
机器学习/深度学习 编解码 测试技术
YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
266 0
YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
机器学习/深度学习 编解码 PyTorch
CVPR 2023 | 主干网络FasterNet 核心解读 代码分析
本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。
9790 58
|
11月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
编解码 计算机视觉
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
1563 0
|
12月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
1723 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】
💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨