YOLOv8改进 | 融合改进篇 | 轻量化CCFM + SENetv2进行融合改进涨点 (全网独家首发)

简介: YOLOv8改进 | 融合改进篇 | 轻量化CCFM + SENetv2进行融合改进涨点 (全网独家首发)

一、本文介绍

本文给大家带来的改进机制是轻量化的Neck结构CCFM配合SENetv2改进的网络结构进行融合改进,其中CCFM为我本人根据RT-DETR模型一比一总结出来的,文中配其手撕结构图,其中SENetV2为网络结构重构化模块,通过其改进主干从而提取更有效的特征,这两个模块搭配在一起,一个轻量化,一个进行有效涨点,搭配在一起效果十分良好,如果在你的数据上有涨点的效果,可以在其基础加一个其它机制配合上我的损失函数即可编写论文。

欢迎大家订阅我的专栏一起学习YOLO!

修改完融合机制参数量直接下降百分之三十GLOPs下降两个点,精度还有提升在我的数据集上该机制可以说非常的有效果,同时该机制我提供两个融合版本提供给大家使用,一个精度更高,一个参数量更少!

image.png

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、SENetV2核心代码

image.png

2.1 SENetV2的框架原理

SENetV2介绍了一种改进的SENet架构,该架构通过引入一种称为Squeeze aggregated excitation(SaE)的新模块来提升网络的表征能力。这个模块结合了挤压和激励(SENetV1)操作,通过多分支全连接层增强了网络的全局表示学习。在基准数据集上的实验结果证明了SENetV2模型相较于现有模型在分类精度上的显著提升。这一架构尤其强调在仅略微增加模型参数的情况下,如何有效地提高模型的性能。

挤压和激励模块大家可以看我发的SENetV1文章里面有介绍。

image.png

图中展示了三种不同的神经网络模块对比:

a) ResNeXt模块:采用多分支CNN结构,不同分支的特征图通过卷积操作处理后合并(concatenate),再进行额外的卷积操作。

b) SENet模块:标准卷积操作后,利用全局平均池化来挤压特征,然后通过两个尺寸为1x1的全连接层(FC)和Sigmoid激活函数来获取通道权重,最后对卷积特征进行缩放(Scale)。

c) SENetV2模块:结合了ResNeXt和SENet的特点,采用多分支全连接层(FC)来挤压和激励操作,最后进行特征缩放。

其中SENetV2的设计旨在通过多分支结构进一步提升特征表达的精细度和全局信息的整合能力。

前面我们提到了SaE,就是SENetV2相对于SENetV1的主要改进机制,下面的图片介绍了其内部工作原理。

image.png

SENet V2中所提出的SaE(Squeeze-and-Excitation)模块的内部工作机制。挤压输出后,被输入到多分支的全连接(FC)层,然后进行激励过程。分割的输入在最后被传递以恢复其原始形状。这种设计能够让网络更有效地学习到输入数据的不同特征,并且在进行特征转换时考虑到不同通道之间的相互依赖性。

目录
相关文章
|
机器学习/深度学习 数据可视化 计算机视觉
YOLOv5改进 | 2023Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
YOLOv5改进 | 2023Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
1124 1
|
7月前
|
计算机视觉
YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题
YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题
538 8
YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题
|
10月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
|
机器学习/深度学习 数据可视化 计算机视觉
YOLOv8改进 | 2023Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
YOLOv8改进 | 2023Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
1085 0
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
652 2
|
11月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17513 0
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
边缘计算 计算机视觉 异构计算
【YOLOv8改进 - 特征融合NECK】Slim-neck:目标检测新范式,既轻量又涨点
YOLO目标检测专栏探讨了模型优化,提出GSConv和Slim-Neck设计,以实现轻量级模型的高效检测。GSConv减小计算复杂度,保持准确性,适合实时任务。Slim-Neck结合GSConv优化架构,提高计算成本效益。在Tesla T4上,改进后的检测器以100FPS处理SODA10M数据集,mAP0.5达70.9%。论文和代码可在提供的链接中获取。文章还介绍了YOLOv8中GSConv的实现细节。更多配置信息见相关链接。