使用pypy来提升你的python项目性能

简介: 使用pypy来提升你的python项目性能

一、PyPy介绍

PyPy是用Python实现的Python解释器的动态编译器,是Armin Rigo开发的产品,能够提升我们python项目的运行速度。PyPy 是利用即时编译的 Python 的替代实现。背后的原理是 PyPy 开始时就像一个解释器,直接从源文件运行我们的 Python 代码。但是,PyPy 不是逐行运行代码,而是在执行它们之前将部分代码编译为机器代码。


根据官方文档的介绍可以看到,平均下来PyPy比CPython(也就是我们主流使用的python)快4.5倍:


PyPy除了速度快外,还有下面一些特点:

  1. 内存使用情况比cpython少
  2. gc策略更优化
  3. Stackless 协程模式默认支持,支持高并发
  4. 兼容性好,高度兼容cpython实现,基本可以无缝切换
  5. PyPy为许多平台和操作系统提供预编译的二进制文件:


二、PyPy安装

我们直接访问下载地址:https://www.pypy.org/download.html 下载对应的包使用即可。

下载完成后解压到任意目录然后加入到环境变量中:


然后在控制台中执行pypy就可以开始使用它了:


三、PyPy和Python测试对比

我们可以通过一个简单的脚本来测试一下它们之间的性能差异,下面是一个循环3千万次的累乘计算:

import datetime
x = 0
start_time = datetime.datetime.now()
for i in range(30000000):
    x += i * i
print('耗时:', datetime.datetime.now() - start_time)

测试结果

python耗时: 0:00:03.357052
pypy耗时: 0:00:00.761932

可以看到有近4.5倍的性能差距,这也符合PyPy官网介绍的。


四、PyPy注意事项

经过测试PyPy也有一些库是不支持的:

  1. pyinstrument
  2. sshtunnel

这只是我经常使用的一些库中发现不支持的库,但绝大部分的库都是支持的,比如Django、requests、pymysql 等。


另外,对于诸如numpypandas这类本身就是C语言开发的扩展时,PyPy的性能反而会更低,PyPy只对纯Python库有明显的性能提升。


最后在你决定要使用PyPy时,你应该思考你的项目是否有性能瓶颈,或者性能瓶颈是因为Python本身效率慢的问题。如果是后端接口项目(类似使用flask、django开发的后端)其性能瓶颈往往在SQL的执行和代码本身的逻辑问题上,而不是python执行慢导致的。所以即便你使用了PyPy也大概率不能解决你的性能问题。

目录
相关文章
|
4月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
213 3
|
2月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
119 61
Python装饰器实战:打造高效性能计时工具
|
4天前
|
缓存 并行计算 数据处理
全面提升Python性能的十三种优化技巧
通过应用上述十三种优化技巧,开发者可以显著提高Python代码的执行效率和性能。每个技巧都针对特定的性能瓶颈进行优化,从内存管理到并行计算,再到使用高效的数值计算库。这些优化不仅能提升代码的运行速度,还能提高代码的可读性和可维护性。希望这些技巧能帮助开发者在实际项目中实现更高效的Python编程。
71 22
|
2月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
164 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
150 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
18天前
|
安全 数据处理 索引
深入探讨 Python 列表与元组:操作技巧、性能特性与适用场景
Python 列表和元组是两种强大且常用的数据结构,各自具有独特的特性和适用场景。通过对它们的深入理解和熟练应用,可以显著提高编程效率和代码质量。无论是在数据处理、函数参数传递还是多线程环境中,合理选择和使用列表与元组都能够使得代码更加简洁、高效和安全。
35 9
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
89 33
|
4月前
|
监控 安全 测试技术
如何在实际项目中应用Python Web开发的安全测试知识?
如何在实际项目中应用Python Web开发的安全测试知识?
123 61
|
4月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
4月前
|
存储 大数据 Python
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
61 1

热门文章

最新文章