python实现的LDA算法

简介: python实现的LDA算法

实现LDA算法需要用到一些数学和概率统计的知识,你需要根据LDA算法的具体公式,实现初始化模型参数、Gibbs采样、模型参数更新等具体的步骤。同时,还需要读取训练文件和词典文件,以及保存模型到文件的功能。

理解LDA算法的实现思路涉及到以下关键步骤:

初始化模型参数:

设置主题数(K), 超参数alpha, beta。

初始化文档-主题分布 (theta) 和 主题-词汇分布 (phi)。

读取文档数据,每行为一个文档,分词后用空格隔开。

构建词典,将每个词映射到唯一的整数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def read_and_build_dictionary(self):
        # Read training file and build vocabulary
        # Implement code to read and build dictionary...

初始化文档-主题分布和主题-词汇分布:

为每个文档中的每个词随机分配一个主题。

根据分配的主题,初始化文档-主题分布和主题-词汇分布。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def initialize(self):
        # ...
        # Initialize document-topic and topic-word distributions
        self.theta = np.random.dirichlet([self.alpha] * self.K, size=len(self.documents))
        self.phi = np.random.dirichlet([self.beta] * len(self.vocabulary), size=self.K)

Gibbs采样:

对每个文档中的每个词进行Gibbs采样。

在采样过程中,考虑当前文档-主题分布、主题-词汇分布以及词汇的分配情况。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def gibbs_sampling(self):
        # Implement Gibbs sampling algorithm...

更新模型参数:

根据采样得到的文档-主题分布和主题-词汇分布,更新模型的参数。

使用迭代方法逐步调整参数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def update_model_parameters(self):
        # Update model parameters based on Gibbs sampling results
        # Implement parameter update code...

输出每个主题的前top_words个词:

根据学习到的主题-词汇分布,输出每个主题的前top_words个词,以便观察主题的含义。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def print_top_words_per_topic(self):
        # Output top_words words for each topic based on learned phi
        # Implement code to print top words...

保存模型:

将学习到的模型参数保存到文件,以备后续使用。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def save_model(self):
        # Save model parameters, theta, phi, etc. to files
        # Implement code to save model...

实际实现中需要考虑数学计算的优化、数据结构的选择、算法的效率等方面的问题。详细的公式和算法细节可以参考LDA的相关文献。在实现过程中,需要使用numpy等工具进行矩阵运算,以提高效率。

实例:

alpha = 0.1

beta = 0.1

K = 10 //主题个数

iter_num = 50 //迭代次数

top_words = 20 //每个主题显示的词的个数

wordmapfile = ‘./model/wordmap.txt’ //wordmap文件存储位置

trnfile = “./model/test.dat” //训练文件

modelfile_suffix = “./model/final” //模型文件的存储位置以及前缀 ‘’’

输入文件的要求: 每行为一篇文档,分词后用空格隔开。

运行命令:

‘’’ python lda.py ‘’’

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import random,os
alpha = 0.1
beta = 0.1
K = 10
iter_num = 50
top_words = 20
wordmapfile  = './model/wordmap.txt'
trnfile = "./model/test.dat"
modelfile_suffix = "./model/final"
class Document(object):
    def __init__(self):
        self.words = []
        self.length = 0
class Dataset(object):
    def __init__(self):
        self.M = 0
        self.V = 0
        self.docs = []
        self.word2id = {}    # <string,int>字典
        self.id2word = {}    # <int, string>字典
    def writewordmap(self):
        with open(wordmapfile, 'w') as f:
            for k,v in self.word2id.items():
                f.write(k + '\t' + str(v) + '\n')
class Model(object):
    def __init__(self, dset):
        self.dset = dset
        self.K = K
        self.alpha = alpha
        self.beta = beta
        self.iter_num = iter_num
        self.top_words = top_words
        self.wordmapfile = wordmapfile
        self.trnfile = trnfile
        self.modelfile_suffix = modelfile_suffix
        self.p = []        # double类型,存储采样的临时变量
        self.Z = []        # M*doc.size(),文档中词的主题分布
        self.nw = []       # V*K,词i在主题j上的分布
        self.nwsum = []    # K,属于主题i的总词数
        self.nd = []       # M*K,文章i属于主题j的词个数
        self.ndsum = []    # M,文章i的词个数
        self.theta = []    # 文档-主题分布
        self.phi = []      # 主题-词分布
    def init_est(self):
        self.p = [0.0 for x in xrange(self.K)]
        self.nw = [ [0 for y in xrange(self.K)] for x in xrange(self.dset.V) ]
        self.nwsum = [ 0 for x in xrange(self.K)]
        self.nd = [ [ 0 for y in xrange(self.K)] for x in xrange(self.dset.M)]
        self.ndsum = [ 0 for x in xrange(self.dset.M)]
        self.Z = [ [] for x in xrange(self.dset.M)]
        for x in xrange(self.dset.M):
            self.Z[x] = [0 for y in xrange(self.dset.docs[x].length)]
            self.ndsum[x] = self.dset.docs[x].length
            for y in xrange(self.dset.docs[x].length):
                topic = random.randint(0, self.K-1)
                self.Z[x][y] = topic
                self.nw[self.dset.docs[x].words[y]][topic] += 1
                self.nd[x][topic] += 1
                self.nwsum[topic] += 1
        self.theta = [ [0.0 for y in xrange(self.K)] for x in xrange(self.dset.M) ]
        self.phi = [ [ 0.0 for y in xrange(self.dset.V) ] for x in xrange(self.K)]
    def estimate(self):
        print 'Sampling %d iterations!' % self.iter_num
        for x in xrange(self.iter_num):
            print 'Iteration %d ...' % (x+1)
            for i in xrange(len(self.dset.docs)):
                for j in xrange(self.dset.docs[i].length):
                    topic = self.sampling(i, j)
                    self.Z[i][j] = topic
        print 'End sampling.'
        print 'Compute theta...'
        self.compute_theta()
        print 'Compute phi...'
        self.compute_phi()
        print 'Saving model...'
        self.save_model()
    def sampling(self, i, j):
        topic = self.Z[i][j]
        wid = self.dset.docs[i].words[j]
        self.nw[wid][topic] -= 1
        self.nd[i][topic] -= 1
        self.nwsum[topic] -= 1
        self.ndsum[i] -= 1
        Vbeta = self.dset.V * self.beta
        Kalpha = self.K * self.alpha
        for k in xrange(self.K):
            self.p[k] = (self.nw[wid][k] + self.beta)/(self.nwsum[k] + Vbeta) * \
                        (self.nd[i][k] + alpha)/(self.ndsum[i] + Kalpha)
        for k in range(1, self.K):
            self.p[k] += self.p[k-1]
        u = random.uniform(0, self.p[self.K-1])
        for topic in xrange(self.K):
            if self.p[topic]>u:
                break
        self.nw[wid][topic] += 1
        self.nwsum[topic] += 1
        self.nd[i][topic] += 1
        self.ndsum[i] += 1
        return topic
    def compute_theta(self):
        for x in xrange(self.dset.M):
            for y in xrange(self.K):
                self.theta[x][y] = (self.nd[x][y] + self.alpha) \
                                   /(self.ndsum[x] + self.K * self.alpha)
    def compute_phi(self):
        for x in xrange(self.K):
            for y in xrange(self.dset.V):
                self.phi[x][y] = (self.nw[y][x] + self.beta)\
                                 /(self.nwsum[x] + self.dset.V * self.beta)
    def save_model(self):
        with open(self.modelfile_suffix+'.theta', 'w') as ftheta:
            for x in xrange(self.dset.M):
                for y in xrange(self.K):
                    ftheta.write(str(self.theta[x][y]) + ' ')
                ftheta.write('\n')
        with open(self.modelfile_suffix+'.phi', 'w') as fphi:
            for x in xrange(self.K):
                for y in xrange(self.dset.V):
                    fphi.write(str(self.phi[x][y]) + ' ')
                fphi.write('\n')
        with open(self.modelfile_suffix+'.twords','w') as ftwords:
            if self.top_words > self.dset.V:
                self.top_words = self.dset.V
            for x in xrange(self.K):
                ftwords.write('Topic '+str(x)+'th:\n')
                topic_words = []
                for y in xrange(self.dset.V):
                    topic_words.append((y, self.phi[x][y]))
                #quick-sort
                topic_words.sort(key=lambda x:x[1], reverse=True)
                for y in xrange(self.top_words):
                    word = self.dset.id2word[topic_words[y][0]]
                    ftwords.write('\t'+word+'\t'+str(topic_words[y][1])+'\n')
        with open(self.modelfile_suffix+'.tassign','w') as ftassign:
            for x in xrange(self.dset.M):
                for y in xrange(self.dset.docs[x].length):
                    ftassign.write(str(self.dset.docs[x].words[y])+':'+str(self.Z[x][y])+' ')
                ftassign.write('\n')
        with open(self.modelfile_suffix+'.others','w') as fothers:
            fothers.write('alpha = '+str(self.alpha)+'\n')
            fothers.write('beta = '+str(self.beta)+'\n')
            fothers.write('ntopics = '+str(self.K)+'\n')
            fothers.write('ndocs = '+str(self.dset.M)+'\n')
            fothers.write('nwords = '+str(self.dset.V)+'\n')
            fothers.write('liter = '+str(self.iter_num)+'\n')
def readtrnfile():
    print 'Reading train data...'
    with open(trnfile, 'r') as f:
        docs = f.readlines()
    dset = Dataset()
    items_idx = 0
    for line in docs:
        if line != "":
            tmp = line.strip().split()
            #生成一个文档对象
            doc = Document()
            for item in tmp:
                if dset.word2id.has_key(item):
                    doc.words.append(dset.word2id[item])
                else:
                    dset.word2id[item] = items_idx
                    dset.id2word[items_idx] = item
                    doc.words.append(items_idx)
                    items_idx += 1
            doc.length = len(tmp)
            dset.docs.append(doc)
        else:
            pass
    dset.M = len(dset.docs)
    dset.V = len(dset.word2id)
    print 'There are %d documents' % dset.M
    print 'There are %d items' % dset.V
    print 'Saving wordmap file...'
    dset.writewordmap()
    return dset
def lda():
    dset = readtrnfile()
    model = Model(dset)
    model.init_est()
    model.estimate()
if __name__=='__main__':
    lda()
目录
打赏
0
0
0
0
27
分享
相关文章
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
19 1
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
16天前
|
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
40 4
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
78 2
|
2月前
|
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
123 18
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
277 3
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
251 1

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问