python实现的LDA算法

简介: python实现的LDA算法

实现LDA算法需要用到一些数学和概率统计的知识,你需要根据LDA算法的具体公式,实现初始化模型参数、Gibbs采样、模型参数更新等具体的步骤。同时,还需要读取训练文件和词典文件,以及保存模型到文件的功能。

理解LDA算法的实现思路涉及到以下关键步骤:

初始化模型参数:

设置主题数(K), 超参数alpha, beta。

初始化文档-主题分布 (theta) 和 主题-词汇分布 (phi)。

读取文档数据,每行为一个文档,分词后用空格隔开。

构建词典,将每个词映射到唯一的整数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def read_and_build_dictionary(self):
        # Read training file and build vocabulary
        # Implement code to read and build dictionary...

初始化文档-主题分布和主题-词汇分布:

为每个文档中的每个词随机分配一个主题。

根据分配的主题,初始化文档-主题分布和主题-词汇分布。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def initialize(self):
        # ...
        # Initialize document-topic and topic-word distributions
        self.theta = np.random.dirichlet([self.alpha] * self.K, size=len(self.documents))
        self.phi = np.random.dirichlet([self.beta] * len(self.vocabulary), size=self.K)

Gibbs采样:

对每个文档中的每个词进行Gibbs采样。

在采样过程中,考虑当前文档-主题分布、主题-词汇分布以及词汇的分配情况。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def gibbs_sampling(self):
        # Implement Gibbs sampling algorithm...

更新模型参数:

根据采样得到的文档-主题分布和主题-词汇分布,更新模型的参数。

使用迭代方法逐步调整参数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def update_model_parameters(self):
        # Update model parameters based on Gibbs sampling results
        # Implement parameter update code...

输出每个主题的前top_words个词:

根据学习到的主题-词汇分布,输出每个主题的前top_words个词,以便观察主题的含义。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def print_top_words_per_topic(self):
        # Output top_words words for each topic based on learned phi
        # Implement code to print top words...

保存模型:

将学习到的模型参数保存到文件,以备后续使用。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def save_model(self):
        # Save model parameters, theta, phi, etc. to files
        # Implement code to save model...

实际实现中需要考虑数学计算的优化、数据结构的选择、算法的效率等方面的问题。详细的公式和算法细节可以参考LDA的相关文献。在实现过程中,需要使用numpy等工具进行矩阵运算,以提高效率。

实例:

alpha = 0.1

beta = 0.1

K = 10 //主题个数

iter_num = 50 //迭代次数

top_words = 20 //每个主题显示的词的个数

wordmapfile = ‘./model/wordmap.txt’ //wordmap文件存储位置

trnfile = “./model/test.dat” //训练文件

modelfile_suffix = “./model/final” //模型文件的存储位置以及前缀 ‘’’

输入文件的要求: 每行为一篇文档,分词后用空格隔开。

运行命令:

‘’’ python lda.py ‘’’

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import random,os
alpha = 0.1
beta = 0.1
K = 10
iter_num = 50
top_words = 20
wordmapfile  = './model/wordmap.txt'
trnfile = "./model/test.dat"
modelfile_suffix = "./model/final"
class Document(object):
    def __init__(self):
        self.words = []
        self.length = 0
class Dataset(object):
    def __init__(self):
        self.M = 0
        self.V = 0
        self.docs = []
        self.word2id = {}    # <string,int>字典
        self.id2word = {}    # <int, string>字典
    def writewordmap(self):
        with open(wordmapfile, 'w') as f:
            for k,v in self.word2id.items():
                f.write(k + '\t' + str(v) + '\n')
class Model(object):
    def __init__(self, dset):
        self.dset = dset
        self.K = K
        self.alpha = alpha
        self.beta = beta
        self.iter_num = iter_num
        self.top_words = top_words
        self.wordmapfile = wordmapfile
        self.trnfile = trnfile
        self.modelfile_suffix = modelfile_suffix
        self.p = []        # double类型,存储采样的临时变量
        self.Z = []        # M*doc.size(),文档中词的主题分布
        self.nw = []       # V*K,词i在主题j上的分布
        self.nwsum = []    # K,属于主题i的总词数
        self.nd = []       # M*K,文章i属于主题j的词个数
        self.ndsum = []    # M,文章i的词个数
        self.theta = []    # 文档-主题分布
        self.phi = []      # 主题-词分布
    def init_est(self):
        self.p = [0.0 for x in xrange(self.K)]
        self.nw = [ [0 for y in xrange(self.K)] for x in xrange(self.dset.V) ]
        self.nwsum = [ 0 for x in xrange(self.K)]
        self.nd = [ [ 0 for y in xrange(self.K)] for x in xrange(self.dset.M)]
        self.ndsum = [ 0 for x in xrange(self.dset.M)]
        self.Z = [ [] for x in xrange(self.dset.M)]
        for x in xrange(self.dset.M):
            self.Z[x] = [0 for y in xrange(self.dset.docs[x].length)]
            self.ndsum[x] = self.dset.docs[x].length
            for y in xrange(self.dset.docs[x].length):
                topic = random.randint(0, self.K-1)
                self.Z[x][y] = topic
                self.nw[self.dset.docs[x].words[y]][topic] += 1
                self.nd[x][topic] += 1
                self.nwsum[topic] += 1
        self.theta = [ [0.0 for y in xrange(self.K)] for x in xrange(self.dset.M) ]
        self.phi = [ [ 0.0 for y in xrange(self.dset.V) ] for x in xrange(self.K)]
    def estimate(self):
        print 'Sampling %d iterations!' % self.iter_num
        for x in xrange(self.iter_num):
            print 'Iteration %d ...' % (x+1)
            for i in xrange(len(self.dset.docs)):
                for j in xrange(self.dset.docs[i].length):
                    topic = self.sampling(i, j)
                    self.Z[i][j] = topic
        print 'End sampling.'
        print 'Compute theta...'
        self.compute_theta()
        print 'Compute phi...'
        self.compute_phi()
        print 'Saving model...'
        self.save_model()
    def sampling(self, i, j):
        topic = self.Z[i][j]
        wid = self.dset.docs[i].words[j]
        self.nw[wid][topic] -= 1
        self.nd[i][topic] -= 1
        self.nwsum[topic] -= 1
        self.ndsum[i] -= 1
        Vbeta = self.dset.V * self.beta
        Kalpha = self.K * self.alpha
        for k in xrange(self.K):
            self.p[k] = (self.nw[wid][k] + self.beta)/(self.nwsum[k] + Vbeta) * \
                        (self.nd[i][k] + alpha)/(self.ndsum[i] + Kalpha)
        for k in range(1, self.K):
            self.p[k] += self.p[k-1]
        u = random.uniform(0, self.p[self.K-1])
        for topic in xrange(self.K):
            if self.p[topic]>u:
                break
        self.nw[wid][topic] += 1
        self.nwsum[topic] += 1
        self.nd[i][topic] += 1
        self.ndsum[i] += 1
        return topic
    def compute_theta(self):
        for x in xrange(self.dset.M):
            for y in xrange(self.K):
                self.theta[x][y] = (self.nd[x][y] + self.alpha) \
                                   /(self.ndsum[x] + self.K * self.alpha)
    def compute_phi(self):
        for x in xrange(self.K):
            for y in xrange(self.dset.V):
                self.phi[x][y] = (self.nw[y][x] + self.beta)\
                                 /(self.nwsum[x] + self.dset.V * self.beta)
    def save_model(self):
        with open(self.modelfile_suffix+'.theta', 'w') as ftheta:
            for x in xrange(self.dset.M):
                for y in xrange(self.K):
                    ftheta.write(str(self.theta[x][y]) + ' ')
                ftheta.write('\n')
        with open(self.modelfile_suffix+'.phi', 'w') as fphi:
            for x in xrange(self.K):
                for y in xrange(self.dset.V):
                    fphi.write(str(self.phi[x][y]) + ' ')
                fphi.write('\n')
        with open(self.modelfile_suffix+'.twords','w') as ftwords:
            if self.top_words > self.dset.V:
                self.top_words = self.dset.V
            for x in xrange(self.K):
                ftwords.write('Topic '+str(x)+'th:\n')
                topic_words = []
                for y in xrange(self.dset.V):
                    topic_words.append((y, self.phi[x][y]))
                #quick-sort
                topic_words.sort(key=lambda x:x[1], reverse=True)
                for y in xrange(self.top_words):
                    word = self.dset.id2word[topic_words[y][0]]
                    ftwords.write('\t'+word+'\t'+str(topic_words[y][1])+'\n')
        with open(self.modelfile_suffix+'.tassign','w') as ftassign:
            for x in xrange(self.dset.M):
                for y in xrange(self.dset.docs[x].length):
                    ftassign.write(str(self.dset.docs[x].words[y])+':'+str(self.Z[x][y])+' ')
                ftassign.write('\n')
        with open(self.modelfile_suffix+'.others','w') as fothers:
            fothers.write('alpha = '+str(self.alpha)+'\n')
            fothers.write('beta = '+str(self.beta)+'\n')
            fothers.write('ntopics = '+str(self.K)+'\n')
            fothers.write('ndocs = '+str(self.dset.M)+'\n')
            fothers.write('nwords = '+str(self.dset.V)+'\n')
            fothers.write('liter = '+str(self.iter_num)+'\n')
def readtrnfile():
    print 'Reading train data...'
    with open(trnfile, 'r') as f:
        docs = f.readlines()
    dset = Dataset()
    items_idx = 0
    for line in docs:
        if line != "":
            tmp = line.strip().split()
            #生成一个文档对象
            doc = Document()
            for item in tmp:
                if dset.word2id.has_key(item):
                    doc.words.append(dset.word2id[item])
                else:
                    dset.word2id[item] = items_idx
                    dset.id2word[items_idx] = item
                    doc.words.append(items_idx)
                    items_idx += 1
            doc.length = len(tmp)
            dset.docs.append(doc)
        else:
            pass
    dset.M = len(dset.docs)
    dset.V = len(dset.word2id)
    print 'There are %d documents' % dset.M
    print 'There are %d items' % dset.V
    print 'Saving wordmap file...'
    dset.writewordmap()
    return dset
def lda():
    dset = readtrnfile()
    model = Model(dset)
    model.init_est()
    model.estimate()
if __name__=='__main__':
    lda()
目录
相关文章
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
23 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
8天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
25 2
|
11天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
28 4
|
12天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
30 4
|
10天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
21 1
|
11天前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
在编程与算法的广袤天地中,总有一些工具如同神兵利器,能够助你一臂之力,在复杂的问题前游刃有余。今天,我们就来深入探讨这样一件神器——Python并查集(Union-Find),看看它是如何让你在算法界呼风唤雨,轻松应对各种复杂场景的。
28 2
|
11天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
30 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
14天前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
37 3
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
下一篇
无影云桌面