Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)


CPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        x = self.fc(x)
        return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.625
[1,   600] loss: 0.181
[1,   900] loss: 0.135
accuracy on test set: 96 % 
[2,   300] loss: 0.111
[2,   600] loss: 0.096
[2,   900] loss: 0.088
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.080
[3,   900] loss: 0.073
accuracy on test set: 98 % 
[4,   300] loss: 0.067
[4,   600] loss: 0.061
[4,   900] loss: 0.067
accuracy on test set: 98 % 
[5,   300] loss: 0.055
[5,   600] loss: 0.058
[5,   900] loss: 0.058
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.048
[6,   900] loss: 0.053
accuracy on test set: 98 % 
[7,   300] loss: 0.044
[7,   600] loss: 0.050
[7,   900] loss: 0.045
accuracy on test set: 98 % 
[8,   300] loss: 0.041
[8,   600] loss: 0.042
[8,   900] loss: 0.045
accuracy on test set: 98 % 
[9,   300] loss: 0.037
[9,   600] loss: 0.042
[9,   900] loss: 0.041
accuracy on test set: 98 % 
[10,   300] loss: 0.036
[10,   600] loss: 0.036
[10,   900] loss: 0.038
accuracy on test set: 98 %

GPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        # print("x.shape",x.shape)
        x = self.fc(x)
        return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
    return correct / total
if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
    plt.plot(epoch_list, acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
[1,   300] loss: 0.698
[1,   600] loss: 0.198
[1,   900] loss: 0.145
accuracy on test set: 96 % 
[2,   300] loss: 0.107
[2,   600] loss: 0.098
[2,   900] loss: 0.089
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.070
[3,   900] loss: 0.072
accuracy on test set: 98 % 
[4,   300] loss: 0.066
[4,   600] loss: 0.059
[4,   900] loss: 0.057
accuracy on test set: 98 % 
[5,   300] loss: 0.048
[5,   600] loss: 0.055
[5,   900] loss: 0.056
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.044
[6,   900] loss: 0.047
accuracy on test set: 98 % 
[7,   300] loss: 0.042
[7,   600] loss: 0.044
[7,   900] loss: 0.043
accuracy on test set: 98 % 
[8,   300] loss: 0.042
[8,   600] loss: 0.036
[8,   900] loss: 0.042
accuracy on test set: 98 % 
[9,   300] loss: 0.035
[9,   600] loss: 0.038
[9,   900] loss: 0.037
accuracy on test set: 98 % 
[10,   300] loss: 0.035
[10,   600] loss: 0.036
[10,   900] loss: 0.032
accuracy on test set: 98 %

相关说明:

1. 卷积神经网络的主要组成

卷积神经网络(Convolutional Neural Networks, CNN)

  • 卷积层(Convolutional layer),卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
  • 池化层(Pooling),它实际上一种形式的向下采样。有多种不同形式的非线性池化函数,而其中最大池化(Max pooling)和平均采样是最为常见的。(Pooling层相当于把一张分辨率较高的图片转化为分辨率较低的图片;pooling层可进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中参数的目的。)
  • 全连接层(Full connection), 与普通神经网络一样的连接方式,一般都在最后几层

直接只进行全连接神经网络可能会导致丧失样本的一些原有的空间结构的信息

2. 卷积计算过程示例:

卷积运算:

简化成下图形式:

3. N通道输入 到 M通道输出:

(卷积核的channel大小(通道数)为n,卷积核的数量为m)

简化成下图形式:

卷积核可以拼为4维的张量

举例:5通道输入 到 10通道输出:

4. 关于Padding:

  • padding:控制应用于输入的填充量。它可以是一个字符串 {‘valid’, ‘same’} 或一个整数元组,给出在双方应用的隐式填充量。( controls the amount of padding applied to the input. It can be either a string {‘valid’, ‘same’} or a tuple of ints giving the amount of implicit padding applied on both sides.)

卷积核为3 * 3,外围填充1圈(3/2=1);

卷积核为5 * 5,外围填充2圈(5/2=2);

上述计算过程的代码:

5. 关于stride:

  • stride :控制互相关、单个数字或元组的步幅。(controls the stride for the cross-correlation, a single number or a tuple.)

可以有效降低图像的高度和宽度

6. 关于下采样

下采样:减少数据的数据量,减低运算的需求

用的比较多的:最大池化层(选取以下四个方格中每个方格的最大值)

以上过程的代码:

注:当kernel_size被设成2的时候,默认的步长stride也会被设置成2;

7. 一个简单的卷积神经网络的过程:

具体的流程:

8. 怎样使用GPU来运算:

相关思考:torch.device(‘cuda‘) 与 torch.device(‘cuda:0‘) 的区别简析

程度运行时使用任务管理器查看是否正在使用GPU:

9. 程序运行结果:

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
102 1
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
14天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
25天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
1月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
85 1
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
27 0
|
14天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
20天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
28天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
42 0

热门文章

最新文章