「读书笔记」《大规模分布式存储系统:原理解析与架构实战》:六

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
全局流量管理 GTM,标准版 1个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 「读书笔记」《大规模分布式存储系统:原理解析与架构实战》:六

6 分布式表格系统

Google Bigtable 是分布式表格系统的始祖,采用双层结构,底层采用 GFS 作为持久化存储层。GFS + Bigtable 双层架构是一种里程碑式的架构。

6.1 Google Bigtable

Bigtable 是 Google 开发的基于 GFS 和 Chubby 的分布式表格系统。

Web 索引、卫星图像数据等在内的海量结构化和半结构化数据,都存储在 Bigtable 中。

Bigtable 是一个分布式多维映射表:

(row:string, column:string, timestamp:int64) -> string
OCAML

Bigtable 将多个列组织成列族(column family),这样,列名由 2 个部分组成:(column family, qualifier)。列族是 Bigtable 中访问控制的基本单元。

6.1.1 架构

Bigtable 构架在 GFS 之上,为文件系统增加一层分布式索引层。另外,Bigtable 依赖 Google 的 Chubby(分布式锁服务)进行服务器选举及全局信息维护。

Bigtable 将大表划分为大小在 100 - 200 MB 的子表(tablet),每个子表对应一个连续的数据范围。Bigtable 主要由 3 个部分组成:

  • 客户端程序库(client):Bigtable 到应用程序的接口。但数据内容是都客户端和子表服务器之间直接传送。
  • 一个主控服务器(Master):管理所有子表服务器,包括分配子表给子表服务器,指导子表服务器实现子表的合并,接受来自子表服务器的子表分裂消息,监控子表服务器,在子表服务器之间进行负载均衡并实现子表服务器的故障恢复等。
  • 多个子表服务器(tablet Server):实现子表的装载、卸载、表格内容的读写,子表的合并和分裂。操作日志以及每个子表上的 sstable 数据存储在底层的 GFS 中。

Bigtable 依赖 Chubby 锁服务实现如下功能:

  1. 选取并保证同一时间只有一个主控服务器;
  2. 存储 Bigtable 系统引导信息;
  3. 用于配合主控服务器发现子表服务器加入和下线;
  4. 获取 Bigtable 表格的 schema 信息及访问控制信息。

Chubby 是一个分布式锁服务,底层算法核心是 Paxos。典型部署为:** 两地三中心五副本,同城的两个数据中心分别部署两个副本,异地的数据中心部署一个副本,** 任何一个数据中心整体发生故障都不影响正常服务。

Bigtable 包含三种类型的表格:

  • 用户表(User Table):存储用户实际数据
  • 元数据表(Meta Table):存储用户表的元数据,如子表位置信息、SSTable 及操作日志文件编号、日志回放点等
  • 根表(Root Table):存储元数据表的元数据。根表的元数据,也就是根表的位置信息,又称 Bigtable 引导信息,存放在 Chubby 系统中。客户端、主控服务器以及子表服务器执行过程中都需要依赖 Chubby 服务,如果 Chubby 发生故障,Bigtable 整体不可用。

6.1.2 数据分布

假设平均一个子表为 128MB,每个子表的元信息为 1KB,那么一级元数据能够支持的数据量为 128MB * (128MB/1KB) = 16TB,两级元数据能够 支持的数据量为 16TB*(128MB/1KB)=2048 PB, 满足几乎所有业务的数据量需求。

客户端使用了缓存(cache)和预取(prefetch)技术。

6.1.3 复制与一致性

Bigtable 系统保证强一致性,同一时刻同一个子表只能被一台 TabletServer 服务。通过 Chubby 互斥锁实现的。

Bigtable 写入 GFS 的数据分为 2 种:

  • 操作日志。
  • 每个子表包含的 SSTable 数据。

6.1.4 容错

6.1.5 负载均衡

子表是 Bigtable 负载均衡的基本单位。

负载均衡:子表迁移。

6.1.6 分裂与合并

6.1.7 单机存储

Bigtable 采用 Merge-dump 引擎。随机读取和顺序读取都只需要访问一次磁盘。

6.1.8 垃圾回收

标记删除(mark-and-sweep)

6.1.9 讨论

GFS + Bigtable 兼顾系统的强一致性和可用性。

底层 GFS 弱一致性,可用性和性能很好;上层的表格系统 Bigtable 通过多级分布式索引使得对外整体表现为强一致性。

Bigtable 最大的优势在于线性可扩展。

Bigtable 架构面临一些问题:

  • 单副本服务。Bigtable 架构适合离线或半线上应用。
  • SSD 使用。
  • 架构的复杂性导致 Bug 定位困难

6.2 Google Megastore

在 Bigtable 系统之上提供友好的数据库功能支持,增强易用性。Megastore 接入传统的关系型数据库和 NoSQL 之间的存储技术。

6.2.1 系统架构

6.2.2 实体组

6.2.3 并发控制

6.2.4 复制

6.2.5 索引

  • 局部索引
  • 全局索引
  • STORING 子句
  • 可重复索引

6.2.6 协调者

6.2.7 读取流程

6.2.8 写入流程

6.2.9 讨论

分布式存储系统的两个目标:

  1. 可扩展性,最终目标是线性可扩展;
  2. 功能,最终目标是支持全功能 SQL。

6.3 Windows Azure Storage

6.3.1 整体架构

相关文章
|
30天前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
78 0
|
4天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
31 4
|
16天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
55 4
|
15天前
|
前端开发 安全 关系型数据库
秒合约系统/开发模式规则/技术架构实现
秒合约系统是一种高频交易平台,支持快速交易、双向持仓和高杠杆。系统涵盖用户注册登录、合约创建与编辑、自动执行、状态记录、提醒通知、搜索筛选、安全权限管理等功能。交易规则明确,设有价格限制和强平机制,确保风险可控。技术架构采用高并发后端语言、关系型数据库和前端框架,通过智能合约实现自动化交易,确保安全性和用户体验。
|
23天前
|
存储 数据管理 调度
HarmonyOS架构理解:揭开鸿蒙系统的神秘面纱
【10月更文挑战第21天】华为的鸿蒙系统(HarmonyOS)以其独特的分布式架构备受关注。该架构包括分布式软总线、分布式数据管理和分布式任务调度。分布式软总线实现设备间的无缝连接;分布式数据管理支持跨设备数据共享;分布式任务调度则实现跨设备任务协同。这些特性为开发者提供了强大的工具,助力智能设备的未来发展。
74 1
|
1月前
|
存储 监控 负载均衡
|
1月前
|
传感器 存储 架构师
构建基于 IoT 的废物管理系统:软件架构师指南
构建基于 IoT 的废物管理系统:软件架构师指南
72 9
|
1月前
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。
|
1月前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
53 3
|
2月前
|
运维 持续交付 API
深入理解并实践微服务架构:从理论到实战
深入理解并实践微服务架构:从理论到实战
133 3

热门文章

最新文章

推荐镜像

更多