【数据结构与算法】2.时间复杂度和空间复杂度

简介: 【数据结构与算法】2.时间复杂度和空间复杂度


时间和空间复杂度

1. 算法效率

算法效率分为两种:第一种是时间效率;第二种是空间效率。时间效率又称为时间复杂度,而空间效率又称为空间复杂度。时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度衡量一个算法所需要的额外空间。

在计算机的发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到很高的程度。所以我们如今不需要特别关注空间复杂度。

2. 时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。应该算法所花费的时间与其中语句执行次数成正比。算法的基本操作的执行次数,为算法的时间复杂度

2.2 大O渐进表示法

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
     int count = 0;
     for (int i = 0; i < N ; i++) {
         for (int j = 0; j < N ; j++) {
                count++;
            }
     }
     for (int k = 0; k < 2 * N ; k++) {
          count++;
     }
     int M = 10;
     while ((M--) > 0) {
          count++;
     }
     System.out.println(count);
}

Func1 执行的基本次数:F(N) = N2 +2 * N + 10

  • N = 10, F(N) = 130;
  • N = 100, F(N) = 10210;
  • N = 1000, F(N) = 1002010;

在实际上我们计算机时间复杂度的,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么我们使用大O渐进表示法。

大O符号:是用于描述函数的渐进行为的数学符号。

2.3 推导大O阶方法

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)

  • N = 10, F(N) = 100
  • N = 100 ,F(N) = 1000
  • N = 1000, F(N) = 1000000

通过上面我们会发现大0渐进表示法去掉了那些对结果影响不大的项。简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况

2.4 常见的时间复杂度

【例子1】:

// 计算func2的时间复杂度?
void func2(int N) {
   int count = 0;
   for (int k = 0; k < 2 * N ; k++) {
       count++;
  }
   int M = 10;
   while ((M--) > 0) {
       count++;
  }
   System.out.println(count);
}
/*
  func2基本操作执行次数 2N + 10次
  时间复杂度:O(N)
*/

【例子2】:

// 计算func3的时间复杂度?
void func3(int N, int M) {
   int count = 0;
   for (int k = 0; k < M; k++) {
       count++;
  }
   for (int k = 0; k < N ; k++) {
       count++;
  }
   System.out.println(count);
}
/*  
  func3基本操作次数 M + N 次
  时间复杂度:0(M + N)
*/

【例子3】:

// 计算func4的时间复杂度?
void func4(int N) {
   int count = 0;
   for (int k = 0; k < 100; k++) {
       count++;
  }
   System.out.println(count);
}
/*
  func4基本操作次数 100次
  时间复杂度:O(1)
*/

【例子4】:

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
   for (int end = array.length; end > 0; end--) {
       boolean sorted = true;
       for (int i = 1; i < end; i++) {
           if (array[i - 1] > array[i]) {
               Swap(array, i - 1, i);
               sorted = false;
          }
      }
   if (sorted == true) {
       break;
   }
 }
/*
  bubbleSort的最好情况为N次,最坏情况为(N * (N - 1) / 2)
  时间复杂度为:O(N ^ 2)
*/

【例子5】:

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
   int begin = 0;
   int end = array.length - 1;
   while (begin <= end) {
       int mid = begin + ((end-begin) / 2);
       if (array[mid] < value)
           begin = mid + 1;
       else if (array[mid] > value)
           end = mid - 1;
       else
           return mid;
  }
   return -1;
}
/*
  binarySearch的时间复杂度:O(longN)
*/

【例子6】:

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
  return N < 2 ? N : factorial(N-1) * N;
}
/*
  factorial基本操作递归了N次
  时间复杂度为O(N)。
*/

【例子7】:

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
  return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}
/*
  fibonacci基本操作递归了2^N次,时间复杂度为O(2^N)
*/

3. 空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

【例子1】:

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
   for (int end = array.length; end > 0; end--) {
       boolean sorted = true;
       for (int i = 1; i < end; i++) {
           if (array[i - 1] > array[i]) {
               Swap(array, i - 1, i);
               sorted = false;
          }
      }
      if (sorted == true) {
           break;
      }
  }
}
/*
  bubbleSort使用了常数个额外空间
  空间复杂度为 O(1)
*/

【例子2】:

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
   long[] fibArray = new long[n + 1];
   fibArray[0] = 0;
   fibArray[1] = 1;
   for (int i = 2; i <= n ; i++) {
       fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
   }
   return fibArray;
}
/*
  fibonacci动态开辟了N个空间
  空间复杂度为 O(N)
*/

【例子3】:

// 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N-1)*N;
}
/*
  factorial递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。
  空间复杂度为O(N)
*/
相关文章
|
3月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
86 6
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
3月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
50 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
3月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
209 0
算法的时间复杂度和空间复杂度
|
3月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
|
3月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
28 0
|
3月前
|
算法 C语言
深入理解算法效率:时间复杂度与空间复杂度
深入理解算法效率:时间复杂度与空间复杂度
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。