【Apollo】阿波罗自动驾驶技术:引领汽车行业革新

简介: 【Apollo】阿波罗自动驾驶技术:引领汽车行业革新

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家https://www.captainbed.cn/z

ChatGPT体验地址

Apollo (阿波罗)是一个开放的、完整的、安全的平台,将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统,快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、成熟、安全的自动驾驶技术和数据开放给业界,旨在建立一个以合作为中心的生态体系,发挥百度在人工智能领域的技术优势,为合作伙伴赋能,共同促进自动驾驶产业的发展和创新。   Apollo 自动驾驶开放平台为开发者提供了丰富的车辆、硬件选择,强大的环境感知、高精定位、路径规划、车辆控制等自动驾驶软件能力以及高精地图、仿真、数据流水线等自动驾驶云服务,帮助开发者从 0 到 1 快速搭建一套自动驾驶系统。

引领汽车行业革新的五大步骤

Apollo开放平台是一个开放的、完整的、安全的平台,将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统,快速搭建一套属于自己的自动驾驶系统,目前已经升级迭代到Apollo beta 版本。


在自动驾驶功能开发中,仿真对自动驾驶的重要性不言而喻,如:


低成本:仿真的路测成本是实际路测成本的大概1%,甚至更少,- 高灵活:在实际路测中,遇到极端情况是很小概率的事件,而且不安全。

 而在仿真系统里,工程师可以通过手工编辑或自动生成来测试众多极端情况,保证在实际路测前有充分的验证。接下来,我们就利用下面的内容,在云端以播放数据包的场景为例带着大家快速上手体验 Apollo Dreamview。

云端体验

云端仿真环境为大家提供一个无需下载安装即可体验仿真调试功能的环境,整个过程无需任何安装步骤,大家可以快速上手体验。

步骤一:登录云端仿真环境


您可以直接登录百度 Apollo 开发者社区,登录云端仿真环境进行实验。

  1. 登录 Apollo Studio 开发者社区。 1. 选择 学堂 > 云实验室。
  2. 在实验列表单击【使用DreamView播放离线数据包】实验,进入云实验详情页。


  1. 1. 单击 开始实验,即可进入实验环境。

步骤二:打开DreamView

在实验室终端模拟器,运行 DreamView 可视化交互系统启动指令。

bash scripts/apollo_neo.sh bootstrap

操作示意图如图所示:

单击上方 Dreamview 按钮进入 Dreamview 界面:

DreamView 运行成功界面


步骤三:播放离线数据包

在当前的终端模拟器下,继续输入并执行cyber播放数据包指令。

cyber_recorder play -f /apollo/data/bag/demo_3.5.record

操作示意图如图所示:

  完成通过 cyber 播放数据包的指令,出现如图所示界面后,此时通过 Dreamview 可视化交互系统即可看到运行的数据包,如图所示:


步骤四:PNC Monitor 内置的数据监视器


步骤五:cyber_monitor 实时通道信息视图

打开新的终端模拟器,输入并执行cyber指令。

cyber_monitor

更全面的Apollo社区官网文档   Apollo社区官网文档,主要为新手开发者提供Apollo相关介绍、以及上机场景和上车场景的实践说明,让新手开发者能快速了解Apollo并上手实操。在8.0中,我们优化了社区官网文档的结构,从开发者使用场景出发,针对不同场景提供应用实践案例指导以及扩展开发指导。  

相关文章
|
7月前
|
自动驾驶 算法 定位技术
为什么自动驾驶永远离不开C++?
为什么自动驾驶永远离不开C++?
141 0
|
7月前
|
传感器 人工智能 自动驾驶
【Apollo】阿波罗自动驾驶:塑造自动驾驶技术的未来
【Apollo】阿波罗自动驾驶:塑造自动驾驶技术的未来
|
7月前
|
人工智能 自动驾驶 搜索推荐
自动驾驶:Apollo如何塑造人类的未来出行
自动驾驶:Apollo如何塑造人类的未来出行
|
7月前
|
缓存 自动驾驶 测试技术
Apollo自动驾驶:新一代智能交通革命的引擎
Apollo自动驾驶:新一代智能交通革命的引擎
|
2月前
|
机器学习/深度学习 自动驾驶 算法
特斯拉发布Robotaxi,支撑其自动驾驶的FSD你需要了解一下
【10月更文挑战第11天】FSD(全自动驾驶)是特斯拉开发的自动驾驶技术,目标是在无需人工干预的情况下,让车辆自主识别路况并完成行驶。该系统基于CNN神经网络,能通过车载摄像头收集的数据进行图像识别与处理。FSD包含自动紧急刹车、自动变道等功能,并在2024年特斯拉“robotaxiday”活动中,推出了cybercab赛博无人出租车和robovan无人驾驶多功能车。基于“端到端”大模型算法,FSD未来将不依赖高精地图行驶,并计划于2025年在美国得州和加州实现“无监督版”完全自动驾驶。
85 16
|
2月前
|
传感器 机器学习/深度学习 自动驾驶
未来出行新纪元:自动驾驶技术深度剖析
【10月更文挑战第6天】 本文旨在深入探讨自动驾驶技术的工作原理、关键技术要素、当前主要挑战以及未来发展趋势。通过对感知、决策和执行层的细致分析,结合行业现状与前瞻,为读者提供一个关于自动驾驶技术的全面视角,揭示其如何引领交通运输领域迈向智能化、安全化与高效化的新阶段。
56 1
|
3月前
|
传感器 机器学习/深度学习 自动驾驶
未来出行的革新:无人驾驶技术深度解析
在当今科技飞速发展的时代,无人驾驶技术正逐步从科幻走向现实,成为未来交通领域最具革命性的变化之一。本文旨在深入探讨无人驾驶技术的工作原理、关键技术组件以及面临的伦理与法律挑战,并展望其对社会经济和日常生活的深远影响。通过分析感知、决策和执行三个核心环节,本文揭示了无人驾驶汽车如何利用先进的传感器阵列、复杂的算法和精密的机械控制来实现自主行驶。同时,文章也讨论了数据安全、隐私保护及责任归属等问题,呼吁建立相应的法规框架以促进技术的健康发展。最后,无人驾驶技术被预测将为减少交通事故、缓解拥堵、提高能效及推动共享经济等方面带来显著益处,预示着一个更加智能、高效和可持续的出行未来。
|
5月前
|
传感器 监控 自动驾驶
与Apolo共创生态: Apollo X自动驾驶解决方案的亮点
与Apolo共创生态: Apollo X自动驾驶解决方案的亮点
54 0
|
7月前
|
传感器 机器学习/深度学习 自动驾驶
探索Apollo自动驾驶系统的革命性技术
探索Apollo自动驾驶系统的革命性技术
|
7月前
|
传感器 自动驾驶 算法
基于Apollo 8.0的自动驾驶感知技术:创新与应用
基于Apollo 8.0的自动驾驶感知技术:创新与应用
158 8