阿里云数据湖构建

简介: 阿里云数据湖构建

阿里云数据湖构建(Data Lake Formation,简称DLF)是一款全托管的云服务,旨在帮助用户快速构建和管理云原生数据湖及Lakehouse。DLF提供了统一的元数据管理、统一的权限与安全管理、便捷的数据入湖能力以及一键式数据探索能力。DLF可以帮助用户快速完成云原生数据湖及Lakehouse方案的构建与管理,并可无缝对接多种计算引擎,打破数据孤岛,洞察业务价值。

阿里云数据湖构建的核心功能如下:

统一元数据管理:DLF支持自动采集发现多引擎元数据,可实现统一管理,避免数据孤岛。
统一权限管理:DLF提供统一的权限管理功能,实现了不同引擎之间的权限互通,降低了权限管理的复杂性。
数据入湖能力:DLF提供便捷的数据入湖能力,支持将多种格式的数据入湖,如csv、mysql等。
一键式数据探索能力:DLF提供一键式数据探索功能,用户可以快速找到需要的数据并进行分析。

相关实践学习
数据湖构建DLF快速入门
本教程通过使⽤数据湖构建DLF产品对于淘宝用户行为样例数据的分析,介绍数据湖构建DLF产品的数据发现和数据探索功能。
目录
相关文章
|
3月前
|
存储 分布式计算 监控
揭秘阿里云EMR:如何巧妙降低你的数据湖成本,让大数据不再昂贵?
【8月更文挑战第26天】阿里云EMR是一种高效的大数据处理服务,助力企业优化数据湖的成本效益。它提供弹性计算资源,支持根据需求调整规模;兼容并优化了Hadoop、Spark等开源工具,提升性能同时降低资源消耗。借助DataWorks及Data Lake Formation等工具,EMR简化了数据湖构建与管理流程,实现了数据的统一化治理。此外,EMR还支持OSS、Table Store等多种存储选项,并配备监控优化工具,确保数据处理流程高效稳定。通过这些措施,EMR帮助企业显著降低了数据处理和存储成本。
129 3
|
3月前
|
安全 数据管理 大数据
数据湖的未来已来:EMR DeltaLake携手阿里云DLF,重塑企业级数据处理格局
【8月更文挑战第26天】在大数据处理领域,阿里云EMR与DeltaLake的集成增强了数据处理能力。进一步结合阿里云DLF服务,实现了数据湖的一站式管理,自动化处理元数据及权限控制,简化管理流程。集成后的方案提升了数据安全性、可靠性和性能优化水平,让用户更专注业务价值。这一集成标志着数据湖技术向着自动化、安全和高效的未来迈出重要一步。
74 2
|
3月前
|
存储 机器学习/深度学习 弹性计算
阿里云EMR数据湖文件系统问题之OSS-HDFS全托管服务的问题如何解决
阿里云EMR数据湖文件系统问题之OSS-HDFS全托管服务的问题如何解决
|
3月前
|
安全 对象存储
阿里云EMR数据湖文件系统问题之JindoFSOSS的单一prefix热点的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFSOSS的单一prefix热点的问题如何解决
|
3月前
|
存储 安全 API
阿里云EMR数据湖文件系统问题之JindoFS元数据查询和修改请求的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS元数据查询和修改请求的问题如何解决
|
6月前
|
存储 缓存 安全
阿里云EMR数据湖文件系统: 面向开源和云打造下一代 HDFS
本文作者详细地介绍了阿里云EMR数据湖文件系统JindoFS的起源、发展迭代以及性能。
72715 79
|
3月前
|
存储 缓存 数据管理
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
|
3月前
|
存储 对象存储 云计算
阿里云EMR数据湖文件系统问题之JindoFS处理大量小文件的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS处理大量小文件的问题如何解决
|
3月前
|
存储 对象存储
阿里云EMR数据湖文件系统问题之JindoFS的Snapshot实现的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS的Snapshot实现的问题如何解决
|
3月前
|
安全 分布式数据库 数据安全/隐私保护
阿里云EMR数据湖文件系统问题之JindoFS支持Snapshot功能的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS支持Snapshot功能的问题如何解决