容器【双例集合、TreeMap容器的使用、 Iterator接口、Collections工具类】(四)-全面详解(学习总结---从入门到深化)

简介: 容器【双例集合、TreeMap容器的使用、 Iterator接口、Collections工具类】(四)-全面详解(学习总结---从入门到深化)



通过元素自身实现比较规则

在元素自身实现比较规则时,需要实现Comparable接口中的 compareTo方法,该方法中用来定义比较规则。TreeSet通过调用 该方法来完成对元素的排序处理。

创建Users类

public class Users implements Comparable<Users>{
    private String username;
    private int userage;
    public Users(String username, intuserage) {
        this.username = username;
        this.userage = userage;
   }
   public Users() { }
  @Override
    public boolean equals(Object o) {
        System.out.println("equals...");
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Users users = (Users) o;
        if (userage != users.userage) return false;
        return username != null ? username.equals(users.username) : users.username == null;
   }
    @Override
    public int hashCode() {
        int result = username != null ? username.hashCode() : 0;
        result = 31 * result + userage;
        return result;
   }
    public String getUsername() {
        return username;
   }
   public void setUsername(String username)
    {
        this.username = username;
   }
   public int getUserage() {
        return userage;
   }
   public void setUserage(int userage) {
        this.userage = userage;
   }
 @Override
  public String toString() {
        return "Users{" +
                "username='" + username + '\'' +
                ", userage=" + userage +
                '}';
   }
    //定义比较规则
    //正数:大,负数:小,0:相等
    @Override
    public int compareTo(Users o) {
        if(this.userage > o.getUserage()){
            return 1;
       }
        if(this.userage == o.getUserage()){
           return this.username.compareTo(o.getUsername());
      }
        return -1;
   }
}
Set<Users> set1 = new TreeSet<>();
Users u = new Users("oldlu",18);
Users u1 = new Users("admin",22);
Users u2 = new Users("sxt",22);
set1.add(u);
set1.add(u1);
set1.add(u2);
for(Users users:set1){
    System.out.println(users);
}

通过比较器实现比较规则

通过比较器定义比较规则时,我们需要单独创建一个比较器,比较 器需要实现Comparator接口中的compare方法来定义比较规则。 在实例化TreeSet时将比较器对象交给TreeSet来完成元素的排序处 理。此时元素自身就不需要实现比较规则了。

创建Student类

public class Student {
    private String name;
    private int age;
    public Student(String name, int age) {
        this.name = name;
        this.age = age;
   }
    public Student() { }
  @Override
    public String toString() {
        return "Student{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
   }
    public String getName() {
        return name;
   }
   public void setName(String name) {
        this.name = name;
   }
    public int getAge() {
        return age;
   }
    public void setAge(int age) {
        this.age = age;
   }
    @Override
   public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Student student = (Student) o;
        if (age != student.age) return false;
        return name != null ? name.equals(student.name) : student.name == null;
   }
    @Override
    public int hashCode() {
        int result = name != null ? name.hashCode() : 0;
        result = 31 * result + age;
        return result;
   }
}

创建比较器

public class StudentComparator implements Comparator<Student> {
    //定义比较规则
    @Override
    public int compare(Student o1, Student o2) {
        if(o1.getAge() > o2.getAge()){
            return 1;
       }
        if(o1.getAge() == o2.getAge()){
            return o1.getName().compareTo(o2.getName());
       }
      return -1;
   }
}
public class TreeSetTest3 {
    public static void main(String[] args) {
        //创建TreeSet容器,并给定比较器对象
        Set<Student> set = new TreeSet<>(new StudentComparator());
        Student s = new Student("oldlu",18);
        Student s1 = new Student("admin",22);
        Student s2 = new Student("sxt",22);
        set.add(s);
        set.add(s1);
        set.add(s2);
        for(Student student:set){
            System.out.println(student);
       }
   }
}

TreeSet底层源码分析

成员变量

/**
* The backing map.
*/
private transient NavigableMap<E,Object> m;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();

构造方法

public TreeSet() {
    this(new TreeMap<E,Object>());
}

添加元素

/**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element <tt>e</tt> to this set if
* this set contains no element <tt>e2</tt> such that
* <tt>(e==null&nbsp;? &nbsp;e2==null&nbsp;:&nbsp;e.equals(e2))</tt>.
* If this set already contains the element, the call leaves the set
* unchanged and returns <tt>false</tt>.
*
* @param e element to be added to this set
* @return <tt>true</tt> if this set did not already contain the specified
* element
*/
public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

单例集合使用案例

需求: 产生1-10之间的随机数([1,10]闭区间),将不重复的10个随机数放到 容器中。

使用List类型容器实现

public class ListDemo {
    public static void main(String[] args) {
        List<Integer> list = new ArrayList<>();
       while(true){
           //产生随机数
           int num = (int) (Math.random()*10+1);
            //判断当前元素在容器中是否存在
           if(!list.contains(num)){
                list.add(num);
           }
           //结束循环
           if(list.size() == 10){
               break;
           }
       }
       for(Integer i:list){
           System.out.println(i);
       }
   }
}

使用Set类型容器实现

public class SetDemo {
    public static void main(String[] args) {
        Set<Integer> set = new HashSet<>();
        while(true){
            int num = (int)(Math.random()*10+1);
            //将元素添加容器中,由于Set类型容器是、不允许有重复元素的,所以不需要判断。
            set.add(num);
            //结束循环
            if(set.size() == 10){
                break;
           }
       }
        for(Integer i:set){
            System.out.println(i);
       }
   }
}

双例集合

Map接口介绍

Map接口定义了双例集合的存储特征,它并不是Collection接口的 子接口。双例集合的存储特征是以key与value结构为单位进行存 储。体现的是数学中的函数 y=f(x)感念。

Map与Collecton的区别:

1、Collection中的容器,元素是孤立存在的(理解为单身),向集 合中存储元素采用一个个元素的方式存储。

2、Map中的容器,元素是成对存在的(理解为现代社会的夫妻)。每 个元素由键与值两部分组成,通过键可以找对所对应的值。

3、Collection中的容器称为单列集合,Map中的容器称为双列集 合。

4、Map中的集合不能包含重复的键,值可以重复;每个键只能对应 一个值。

5、Map中常用的容器为HashMap,TreeMap等。

Map接口中常用的方法表

HashMap容器的使用

HashMap采用哈希算法实现,是Map接口最常用的实现类。 由于 底层采用了哈希表存储数据,我们要求键不能重复,如果发生重 复,新的键值对会替换旧的键值对。 HashMap在查找、删除、修 改方面都有非常高的效率。

public class HashMapTest {
    public static void main(String[] args) {
        //实例化HashMap容器
        Map<String,String> map = new HashMap<>();
        //添加元素
        map.put("a","A");
        map.put("b","B");
        map.put("c","C");
        map.put("a","D");
        //获取容器中元素数量
        int size = map.size();
        System.out.println(size);
        System.out.println("---------------");
        //获取元素
        //方式一
        String v = map.get("a");
        System.out.println(v);
        System.out.println("---------------");
        //方式二
        Set<String> keys = map.keySet();
        for(String key:keys){
            String v1 = map.get(key);
            System.out.println(key+" ----"+v1);
       }
        System.out.println("-------------------");
        //方式三
        Set<Map.Entry<String,String>> entrySet = map.entrySet();
        for(Map.Entry<String,String> entry:entrySet){
            String key = entry.getKey();
            String v2 = entry.getValue();
            System.out.println(key+" ---------- "+v2);
       }
        System.out.println("--------------------");
        //Map容器的并集操作
        Map<String,String> map2 = new HashMap<>();
        map2.put("f","F");
        map2.put("c","CC");
        map.putAll(map2);
        Set<String> keys2 = map.keySet();
        for(String key:keys2){
            System.out.println("key: "+key+" Value: "+map.get(key));
       }
        System.out.println("---------------");
        //删除元素
        String v3 = map.remove("a");
        System.out.println(v3);
        Set<String> keys3 = map.keySet();
        for(String key:keys3){
            System.out.println("key: "+key+" Value: "+map.get(key));
       }
        System.out.println("-------------------");
        //判断Key是否存在
        boolean b = map.containsKey("b");
        System.out.println(b);
        //判断Value是否存在
        boolean cc = map.containsValue("CC");
        System.out.println(cc);
    }
}

HashTable类和HashMap用法几乎一样,底层实现几乎一样,只不 过HashTable的方法添加了synchronized关键字确保线程同步检 查,效率较低。

HashMap与HashTable的区别

1 HashMap: 线程不安全,效率高。允许key或value为null

2 HashTable: 线程安全,效率低。不允许key或value为null

HashMap的底层源码分析

底层存储介绍

HashMap底层实现采用了哈希表,这是一种非常重要的数据结构。 对于我们以后理解很多技术都非常有帮助。 数据结构中由数组和链表来实现对数据的存储,他们各有特点。

(1) 数组:占用空间连续。 寻址容易,查询速度快。但是,增加和 删除效率非常低。

(2) 链表:占用空间不连续。 寻址困难,查询速度慢。但是,增加 和删除效率非常高。 那么,我们能不能结合数组和链表的优点(即查询快,增删效率也 高)呢? 答案就是“哈希表”。 哈希表的本质就是“数组+链表”。

Oldlu建议

对于本章中频繁出现的“底层实现”讲解,建议学有余力的童鞋将 它搞通。刚入门的童鞋如果觉得有难度,可以暂时跳过。入门 期间,掌握如何使用即可,底层原理是扎实内功,便于大家应 对一些大型企业的笔试面试。

HashMap中的成员变量

/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;

HashMap中存储元素的节点类型

Node类

static class Node<K,V> implements
Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
   }
public final K getKey()       { return key; }
public final V getValue()     { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); }
public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
   }
public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue()))
                return true;
       }
        return false;
   }
}

TreeNode类

/**
* Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
* extends Node) so can be used as extension of either regular or
* linked node.
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
   }
    /**
     * Returns root of tree containing thisnode.
     */
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
       }
   }

它们的继承关系

HashMap中的数组初始化

在JDK1.8的HashMap中对于数组的初始化采用的是延迟初始化方 式。通过resize方法实现初始化处理。resize方法既实现数组初始 化,也实现数组扩容处理。

/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-oftwo expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
       }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
   }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initialthreshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
   }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                 (int)ft : Integer.MAX_VALUE);
   }
    threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V> [])new Node[newCap];
        table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null,loTail = null;
                    Node<K,V> hiHead = null,hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail ==null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                       }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                       }
                   } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                   }
                   if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                   }
               }
           }
       }
   }
    return newTab;
}

HashMap中计算Hash值

1 获得key对象的hashcode

首先调用key对象的hashcode()方法,获得key的hashcode值。

2 根据hashcode计算出hash值(要求在[0, 数组长度-1]区 间)hashcode是一个整数,我们需要将它转化成[0, 数组长度-1] 的范围。我们要求转化后的hash值尽量均匀地分布在[0,数组长 度-1]这个区间,减少“hash冲突”

    2.1  一种极端简单和低下的算法是: hash值 = hashcode/hashcode; 也就是说,hash值总是1。意味着,键值对对象都会存储到 数组索引1位置,这样就形成一个非常长的链表。相当于每存 储一个对象都会发生“hash冲突”,HashMap也退化成了一个 “链表”。

    2.2  一种简单和常用的算法是(相除取余算法): hash值 = hashcode%数组长度;

    这种算法可以让hash值均匀的分布在[0,数组长度-1]的区间。 但是,这种算法由于使用了“除法”,效率低下。JDK后来改进 了算法。首先约定数组长度必须为2的整数幂,这样采用位运 算即可实现取余的效果:hash值 = hashcode&(数组长 度-1)。

/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value,
boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
               }
                if (e.hash == hash &&
                   ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
           }
       }
        if (e != null) { // existing mapping 
       for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;afterNodeAccess(e);
            return oldValue;
       }
   }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

HashMap中添加元素

/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
*         <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
    return putVal(hash(key), key, value,false, true);
}

HashMap中数组扩容

/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change
existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
  tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
           ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab,hash);
                    break;
               }
                if (e.hash == hash &&
                   ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
           }
       }
if (e != null) { // existing mapping
       for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
       }
   }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-oftwo expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
     Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
       }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
   }
    else if (oldThr > 0) // initial capacity
        was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
   }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
        (int)ft : Integer.MAX_VALUE);
   }
    threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V> [])new Node[newCap];
        table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                          if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                       }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                       }
                   } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                   }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                   }
               }
           }
       }
   }
 return newTab;
}

TreeMap容器的使用

TreeMap和HashMap同样实现了Map接口,所以,对于API的用法 来说是没有区别的。HashMap效率高于TreeMap;TreeMap是可 以对键进行排序的一种容器,在需要对键排序时可选用TreeMap。 TreeMap底层是基于红黑树实现的。

在使用TreeMap时需要给定排序规则:

1、元素自身实现比较规则

2、通过比较器实现比较规则

元素自身实现比较规则

public class Users implements
Comparable<Users>{
    private String username;
    private int userage;
public Users(String username, int userage) {
        this.username = username;
        this.userage = userage;
   }
    public Users() { }
    @Override
    public boolean equals(Object o) {
        System.out.println("equals...");
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Users users = (Users) o;
        if (userage != users.userage) return false;
        return username != null ? username.equals(users.username) : users.username == null;
   }
    @Override
    public int hashCode() {
        int result = username != null ? username.hashCode() : 0;
        result = 31 * result + userage;
        return result;
}
    public String getUsername() {
        return username;
   }
    public void setUsername(String username)
     {
        this.username = username;
     }
    public int getUserage() {
        return userage;
     }
    public void setUserage(int userage) {
        this.userage = userage;
   }
    @Override
    public String toString() {
        return "Users{" +
                "username='" + username + '\'' +
                ", userage=" + userage +
                '}';
   }
    //定义比较规则
    //正数:大,负数:小,0:相等
    @Override
    public int compareTo(Users o) {
       if(this.userage < o.getUserage()){
            return 1;
       }
        if(this.userage == o.getUserage()){
           return this.username.compareTo(o.getUsername());
       }
        return -1;
   }
}
public class TreeMapTest {
    public static void main(String[] args) {
        //实例化TreeMap
        Map<Users,String> map = new TreeMap<>();
        Users u1 = new Users("oldlu",18);
        Users u2 = new Users("admin",22);
        Users u3 = new Users("sxt",22);
        map.put(u1,"oldlu");
        map.put(u2,"admin");
        map.put(u3,"sxt");
        Set<Users> keys = map.keySet();
        for(Users key :keys){
            System.out.println(key+" --------- "+map.get(key));
       }
   }
}

通过比较器实现比较规则

public class Student {
    private String name;
    private int age;
    public Student(String name, int age) {
        this.name = name;
        this.age = age;
   }
    public Student() { }
    @Override
    public String toString() {
        return "Student{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
   }
    public String getName() {
        return name;
   }
    public void setName(String name) {
        this.name = name;
   }
    public int getAge() {
        return age;
   }
  public void setAge(int age) {
        this.age = age;
   }
    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Student student = (Student) o;
        if (age != student.age) return false;
        return name != null ? name.equals(student.name) : student.name == null;
   }
    @Override
    public int hashCode() {
        int result = name != null ? name.hashCode() : 0;
        result = 31 * result + age;
        return result;
   }
}
public class StudentComparator implements Comparator<Student> {
    //定义比较规则
  @Override
    public int compare(Student o1, Student o2) {
        if(o1.getAge() > o2.getAge()){
            return 1;
       }
        if(o1.getAge() == o2.getAge()){
            return
           o1.getName().compareTo(o2.getName());
       }
        return -1;
   }
}
public class TreeMapTest {
    public static void main(String[] args) {
          Map<Student,String> treeMap = new TreeMap<>(new StudentComparator());
    Student s1 = new Student("oldlu",18);
    Student s2 = new Student("admin",22);
    Student s3 = new Student("sxt",22);
    treeMap.put(s1,"oldlu");
    treeMap.put(s2,"admin");
    treeMap.put(s3,"sxt");
    Set<Student> keys1 = treeMap.keySet();
    for(Student key :keys1){
        System.out.println(key+" ----"+treeMap.get(key));
     }
   }
}

TreeMap的底层源码分析

TreeMap是红黑二叉树的典型实现。我们打开TreeMap的源码,发 现里面有一行核心代码:

private transient Entry<K,V> root = null;

root用来存储整个树的根节点。我们继续跟踪Entry(是TreeMap的 内部类)的代码:

可以看到里面存储了本身数据、左节点、右节点、父节点、以及节 点颜色。 TreeMap的put()/remove()方法大量使用了红黑树的理 论。在本节课中,不再展开。需要了解更深入的,可以参考专门的 数据结构书籍。 TreeMap和HashMap实现了同样的接口Map,因此,用法对于调 用者来说没有区别。HashMap效率高于TreeMap;在需要排序的 Map时才选用TreeMap。

Iterator接口

Iterator迭代器接口介绍

Collection接口继承了Iterable接口,在该接口中包含一个名为 iterator的抽象方法,所有实现了Collection接口的容器类对该方法 做了具体实现。iterator方法会返回一个Iterator接口类型的迭代器 对象,在该对象中包含了三个方法用于实现对单例容器的迭代处 理。

Iterator对象的工作原理

Iterator接口定义了如下方法:

1 boolean hasNext(); //判断游标当前位置的下一个位置是否还有元素没有被遍历;

2 Object next(); //返回游标当前位置的下一个元素并将游标移动到下一个位置;

3 void remove(); //删除游标当前位置的元素,在执行完next后该操作只能执行一次;

Iterator迭代器的使用

迭代List接口类型容器

public class IteratorListTest {
    public static void main(String[] args) {
        //实例化容器
        List<String> list  = new ArrayList<>();
        list.add("a");
        list.add("b");
        list.add("c");
        //获取元素
        //获取迭代器对象
        Iterator<String> iterator = list.iterator();
        //方式一:在迭代器中,通过while循环获取元素
        while(iterator.hasNext()){
            String value = iterator.next();
            System.out.println(value);
       }
        System.out.println("-------------------------------");
        //方法二:在迭代器中,通过for循环获取元素
        for(Iterator<String> it = list.iterator();it.hasNext();){
            String value = it.next();
            System.out.println(value);
       }
   }
}

迭代Set接口类型容器

public class IteratorSetTest {
    public static void main(String[] args) {
        //实例化Set类型的容器
        Set<String> set  = new HashSet<>();
        set.add("a");
        set.add("b");
        set.add("c");
        //方式一:通过while循环
        //获取迭代器对象
        Iterator<String> iterator = set.iterator();
        while(iterator.hasNext()){
            String value = iterator.next();
            System.out.println(value);
           }
        System.out.println("-------------------------");
        //方式二:通过for循环
        for(Iterator<String> it = set.iterator();it.hasNext();){
            String value = it.next();
            System.out.println(value);
       }
   }
}

迭代Map接口类型容器

public class IteratorMapTest {
    public static void main(String[] args) {
        //实例化HashMap容器
        Map<String, String> map = new HashMap<String, String>();
        //添加元素
        map.put("a", "A");
        map.put("b", "B");
        map.put("c", "C");
        //遍历Map容器方式一
        Set<String> keySet = map.keySet();
        for (Iterator<String> it = keySet.iterator(); it.hasNext();){
            String key = it.next();
            String value = map.get(key);
            System.out.println(key+" ------------- "+value);
       }
        System.out.println("------------------------");
        //遍历Map容器方式二
        Set<Map.Entry<String, String>> entrySet = map.entrySet();
        Iterator<Map.Entry<String, String>> iterator = entrySet.iterator();
        while(iterator.hasNext()){
            Map.Entry entry = iterator.next();
         System.out.println(entry.getKey()+" ------------ "+ entry.getValue());
       }
   }
}

在迭代器中删除元素

public class IteratorRemoveTest {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("a");
        list.add("b");
        list.add("c");
        list.add("d");
        Iterator<String> iterator = list.iterator();
        while(iterator.hasNext()){
            //不要在一次循环中多次调用next方法。
            String value = iterator.next();
            iterator.remove();
       }
        System.out.println("----------------");
        for(Iterator<String> it = list.iterator();
           it.hasNext();){
            System.out.println(it.next());
            list.add("dddd");
       }
   }
}

遍历集合的方法总结

遍历List方法一:普通for循环

for(int i=0;i<list.size();i++){//list为集合的对象名
 String temp = (String)list.get(i);
 System.out.println(temp);
}

遍历List方法二:增强for循环(使用泛型!)

for (String temp : list) {
 System.out.println(temp);
}

遍历List方法三:使用Iterator迭代器(1)

for(Iterator iter=
list.iterator();iter.hasNext();){
 String temp = (String)iter.next();
 System.out.println(temp);
}

遍历List方法四:使用Iterator迭代器(2)

Iterator  iter =list.iterator();
while(iter.hasNext()){
 Object  obj =  iter.next();
 iter.remove();//如果要遍历时,删除集合中的元素,建议使用这种方式!
 System.out.println(obj);
}

遍历Set方法一:增强for循环

for(String temp:set){
 System.out.println(temp);
}

遍历Set方法二:使用Iterator迭代器

for(Iterator iter =
set.iterator();iter.hasNext();){
 String temp = (String)iter.next();
 System.out.println(temp);
}

遍历Map方法一:根据key获取value

Map<Integer, Man> maps = new HashMap<Integer,
Man>();
Set<Integer>  keySet =  maps.keySet();
for(Integer id : keySet){
 System.out.println(maps.get(id).name);
}

遍历Map方法二:使用entrySet

Set<Map.Entry<Integer, Man>>  ss =
maps.entrySet();
for (Iterator<Map.Entry<Integer, Man>>
iterator = ss.iterator();
iterator.hasNext();) {
 Map.Entry e =  iterator.next();
 System.out.println(e.getKey()+"--
"+e.getValue());
}

Collections工具类

类 java.util.Collections 提供了对Set、List、Map进行排序、填充、 查找元素的辅助方法。

Collections工具类的常用方法

public class CollectionsTest {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("c");
        list.add("b");
        list.add("a");
        //对元素排序
        Collections.sort(list);
        for(String str:list){
            System.out.println(str);
       }
        System.out.println("-------------------");
        List<Users> list2 = new ArrayList<>();
        Users u = new Users("oldlu",18);
        Users u2 = new Users("sxt",22);
        Users u3 = new Users("admin",22);
        list2.add(u);
        list2.add(u2);
        list2.add(u3);
        //对元素排序
        Collections.sort(list2);
        for(Users user:list2){
            System.out.println(user);
       }
        System.out.println("-------------------");
        List<Student> list3 = new ArrayList<>();
        Student s = new Student("oldlu",18);
        Student s1 = new Student("sxt",20);
        Student s2 = new Student("admin",20);
        list3.add(s);
        list3.add(s1);
        list3.add(s2);
        Collections.sort(list3,new StudentComparator());
        for(Student student:list3){
            System.out.println(student);
       }
        System.out.println("-------------------");
        List<String> list4 = new ArrayList<>();
        list4.add("a");
        list4.add("b");
        list4.add("c");
        list4.add("d");
        //洗牌
        Collections.shuffle(list4);
        for(String str:list4){
            System.out.println(str);
       }
   }
}
目录
相关文章
|
1月前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
95 2
|
23天前
|
Kubernetes Cloud Native 开发者
云原生入门:从容器到微服务
本文将带你走进云原生的世界,从容器技术开始,逐步深入到微服务架构。我们将通过实际代码示例,展示如何利用云原生技术构建和部署应用。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和启示。
|
1月前
|
Cloud Native 持续交付 Docker
Docker容器化技术:从入门到实践
Docker容器化技术:从入门到实践
|
1月前
|
Cloud Native 持续交付 云计算
云原生入门指南:从容器到微服务
【10月更文挑战第28天】在数字化转型的浪潮中,云原生技术成为推动现代软件开发的关键力量。本篇文章将带你了解云原生的基本概念,探索它如何通过容器化、微服务架构以及持续集成和持续部署(CI/CD)的实践来提升应用的可伸缩性、灵活性和可靠性。你将学习到如何利用这些技术构建和部署在云端高效运行的应用,并理解它们对DevOps文化的贡献。
56 2
|
27天前
|
Kubernetes Cloud Native 云计算
云原生入门:Kubernetes 和容器化基础
在这篇文章中,我们将一起揭开云原生技术的神秘面纱。通过简单易懂的语言,我们将探索如何利用Kubernetes和容器化技术简化应用的部署和管理。无论你是初学者还是有一定经验的开发者,本文都将为你提供一条清晰的道路,帮助你理解和运用这些强大的工具。让我们从基础开始,逐步深入了解,最终能够自信地使用这些技术来优化我们的工作流程。
|
1月前
|
运维 Kubernetes Cloud Native
云原生入门:Kubernetes和容器化的未来
【10月更文挑战第23天】本文将带你走进云原生的世界,探索Kubernetes如何成为现代软件部署的心脏。我们将一起揭开容器化技术的神秘面纱,了解它如何改变软件开发和运维的方式。通过实际的代码示例,你将看到理论与实践的结合,感受到云原生技术带来的革命性影响。无论你是初学者还是有经验的开发者,这篇文章都将为你开启一段新的旅程。让我们一起踏上这段探索之旅,解锁云原生技术的力量吧!
|
1月前
|
Kubernetes Linux Docker
容器化技术Docker入门与实践
容器化技术Docker入门与实践
54 0
|
2月前
|
Ubuntu Shell 开发者
Docker入门:轻松开始容器化之旅
【10月更文挑战第17天】Docker 是一种开源的应用容器引擎,它让开发者能够“一次构建、到处运行”。Docker 通过容器化技术将应用程序及其依赖打包在一起,从而确保应用在任何环境中都能一致地运行。本文将为新手用户提供一个全面的Docker入门指南,包括基本概念、优势、安装配置以及如何创建和管理容器。
55 2
|
1月前
|
Kubernetes Docker 容器
掌握Docker容器化技术:从入门到实战
掌握Docker容器化技术:从入门到实战
27 0
|
2月前
|
存储 运维 云计算
探索Docker容器化:从入门到实践
在这个快速发展的云计算时代,Docker容器化技术正在改变应用的开发、部署和管理方式。本文旨在为初学者提供一个关于Docker的全面入门指南,并通过实践案例展示Docker在实际开发中的应用。我们将一起了解Docker的核心概念、基本操作、网络和存储,以及如何构建和部署一个简单的Web应用。无论你是开发者还是运维人员,本文都会帮助你快速掌握Docker的核心技能。
下一篇
DataWorks