基于BP神经网络的手写体数字识别matlab仿真

简介: 基于BP神经网络的手写体数字识别matlab仿真

1.算法运行效果图预览

ef0d9c88906fcfcaeff04696999369c8_82780907_202402012356120120502280_Expires=1706803572&Signature=vUT1d6ZBBhg5PoReSZ0420odFfw%3D&domain=8.jpeg
7e8c719caac57fbaa1710f2b9fdb0921_82780907_202402012356120167636143_Expires=1706803572&Signature=iB6rmjBpbVquwLd4jpj6gZG052k%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
人工神经元网络是生理学上的真实人脑神经网络的机构和功能,以及若干基本特性的某种理论抽象、简化和模拟而构成的一种信息处理系统。从构造上大致可分为最简单的感知器网络、多层前馈型神经网络、反馈型神经网络和自组织神经元网络等。

    由于神经网络具有可并行计算、分布式信息存储自适应和学习能力强等优点,在很多领域获得了极其广泛的应用。尤其是BP网络,即反向传播网络,其应用最为广泛。BP网络是利用非线性可微分函数进行权值训练的多层网络,在函数逼近、模式识别、信息分类及数据压缩等领域得到了广泛的应用。

    但是神经网络学习过程的算法在数学计算上都比较复杂,过程也比较繁琐,容易出错。因此,采用计算机辅助进行神经网络设计与分析成了必然的选择。目前,在比较成熟的神经网络软件包中,MATLAB的神经网络工具箱应用最为广泛。MATLAB是矩阵实验室(Matrix Laboratory)的简称,它可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

   手写体数字识别系统的结构图如图所示。

23b544014379e50af33c5cb20c66dcdb_82780907_202402012355310276554979_Expires=1706803531&Signature=HoszHo8C%2Bfj4eXUiUhcNh4UupOg%3D&domain=8.png

    在对字体进行预处理后要进行的是特征的提取,选取图像的灰度特征时要考虑到特征量的维数与识别的准确率的要求。例如,我们将一个字符归—化为17像素×8像素点阵图。按每个像素位为0或1,形成网络的136个输入特征值。得到的特征图像是二值图像,对应一个元素为0和l的17像素×8像素的特征矩阵,然后是对特征图像编码。编码规则是,按照从左至右、从上到下的顺序,依次扫描整个特征矩阵,将每一行的0和1转换成一个136像素×1像素的特征列。将每一个字符都进行编码后,顺序送送入已经训练好的神经网络识别,识别结果最后以文本格式输出。

   BP网络是神经网络的一个分支,又称为多层感知或误差信号反馈网络。它是目前较流行的,应用最广的神经网络模型。BP网络是一种有教师的学习网络,其主要特点是能够实现从n到m维的非线性映射,它还可以采用梯度下降法实现快速收敛。如图所示为BP网络示意图。

60cc649a21be9624bdf5b19908c4438f_82780907_202402012354350636113305_Expires=1706803475&Signature=jpPaD4TtAoBDpIXpzLD0OOHU9eg%3D&domain=8.png

4.部分核心程序
```filename = dir('images*.bmp'); %图像文件格式
load BP.mat

filename = dir('test*.bmp'); %图像文件格式
%测试集测试
figure;
for k=1:60
filename(k).name
p(1:256,1)=1; %初始图像二值化像素
p1=ones(16,16);
%加载训练好的网络
x=imread(filename(k).name);

bw=im2bw(x,0.5);              %二值化
[i,j]= find(bw==0);           %寻找数字所在的像素索引
imin=min(i);                  %求取数字像素占据空间的最小行索引
imax=max(i);                  %求取数字像素占据空间的最大行的索引
jmin=min(j);                  %求取数字像素占据空间的最小列的索引
jmax=max(j);                  %求取数字像素占据空间的最大列的索引
bwl=bw(imin:imax,jmin:jmax);  %把图像由39×39缩放为实际数字像素所需的空间
rate=16/max(size(bwl));       %求取放大比率
bwl=imresize(bwl,rate);       %按比率放大图像
[i,j]=size(bwl);              %求取行列数
i1=round((16-i)/2);           %取整
j1=round((16-j)/2);
p1(i1+1:i1+i,j1+1:j1+j)=bwl;  %图像从右向暂存
p1=-1.*p1+ones(16,16);        %将图像反色
for m=0:15                    %样本特征存于输入矢量
     p(m*16+1:(m+1)*16,1)=p1(1:16,m+1);  
end
[a,Pf,Af]=sim(net,p);      %测试
subplot(10,6,k);
imshow(x);                 %显示原始图像
a=round(a);                %显示识别结果
title(['识别结果:',num2str(a)]);                 

end

```

相关文章
|
15天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
149 80
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
11天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
下一篇
开通oss服务