CNN经典网络模型之GoogleNet论文解读

简介: GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。

1. GoogleNet


GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。



1.1 Inception模块


GoogleNet引入了"Inception"模块,该模块使用不同尺度的卷积核来同时捕获不同尺度的特征。这有助于网络更好地适应不同大小的对象和结构。每个Inception模块包含多个并行的卷积层和池化层,然后将它们的输出在通道维度上连接起来。

左图呢,是论文中提出的inception原始结构,右图是inception加上降维功能的结构。


先看左图,inception结构一共有4个分支,也就是说我们的输入的特征矩阵并行的通过这四个分支得到四个输出,然后在将这四个输出在深度维度(channel维度)进行拼接得到我们的最终输出(注意,为了让四个分支的输出能够在深度方向进行拼接,必须保证四个分支输出的特征矩阵高度和宽度都相同)。


分支1是卷积核大小为1x1的卷积层,stride=1,

分支2是卷积核大小为3x3的卷积层,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等),

分支3是卷积核大小为5x5的卷积层,stride=1,padding=2(保证输出特征矩阵的高和宽和输入特征矩阵相等),

分支4是池化核大小为3x3的最大池化下采样,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等)

再看右图,对比左图,就是在分支2,3,4上加入了卷积核大小为1x1的卷积层,目的是为了降维,减少模型训练参数,减少计算量。


注意: 如果保持输入的图像尺寸不变,在步长为1的情况下,padding=(卷积核大小-1)/  2 。


1.1.1 1x1卷积


1x1卷积: 1x1卷积在Inception模块中被广泛使用,它用于降低通道数,从而减少计算量。1x1卷积的作用类似于将不同通道的特征进行线性组合,以创建一种综合特征表示。


同样是对一个深度为512的特征矩阵使用65个大小为5x5的卷积核进行卷积,不使用1x1卷积核进行降维话一共需要819200个参数,如果使用1x1卷积核进行降维一共需要50688个参数,明显少了很多。





1.2 辅助分类器结构


为了解决梯度消失问题,GoogleNet在中间某些层添加了辅助分类器。这些辅助分类器有助于训练过程中的梯度传播,同时还可以提供网络中间层的监督信号,有助于更快地训练网络。


有两个辅助分类器,结构如下图:



这两个辅助分类器的输入分别来自Inception(4a)和Inception(4d)。


辅助分类器的第一层是一个平均池化下采样层,池化核大小为5x5,stride=3

第二层是卷积层,卷积核大小为1x1,stride=1,卷积核个数是128

第三层是全连接层,节点个数是1024

第四层是全连接层,节点个数是1000(对应分类的类别个数)


1.3 GoogleNet网络结构图


每个卷积层的卷积核个数如何确定呢,下面是原论文中给出的参数列表,对于我们搭建的Inception模块,所需要使用到参数有#1x1, #3x3reduce, #3x3, #5x5reduce, #5x5, poolproj,这6个参数,分别对应着所使用的卷积核个数。



其中#1x1对应着分支1上1x1的卷积核个数,#3x3 reduce对应着分支2上1x1的卷积核个数,#3x3对应着分支2上3x3的卷积核个数,#5x5 reduce对应着分支3上1x1的卷积核个数,#5x5对应着分支3上5x5的卷积核个数,pool proj对应着分支4上1x1的卷积核个数。


如下图所示:



下面是GoogleNet整体网络结构如下图:


相关文章
|
2天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
11 2
|
5天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
2天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
9 1
|
9天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
13天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
19天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
62 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
20 0
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章