数据质量监控系统设计

简介: 数据质量监控系统设计

整体架构设计


数据质量监控平台主要包括三个部分:数据层、功能层和应用层,平台架构如图1所示。


  1.数据层


  数据层定义了数据质量监控的对象,主要是各核心业务系统的数据,如人事系统、教学系统、科研系统、学生系统等。


  2.功能层

  功能层是数据质量监控平台的核心部分,包括数据质量检查规则的定义、数据质量检查规则脚本、检查规则执行引擎、数据质量检查规则执行情况监控等。


  3.应用层

  数据质量检查结果可以通过两种方式访问:一种是通过邮件订阅方式将数据质量检查结果发给相关人员,另一种方式利用前端展示工具(如MicroStrategy、Cognos、Tableau等)开发数据质量在线分析报表、仪表盘、分析报告等。前端展示报表不仅能够查看汇总数据,而且能够通过钻取功能查看明细数据以便业务人员能够准确定位到业务系统的错误数据。


规则库设计与梳理


常见规则:

序号  分类  规则细则
1  校验规则  A字段值长度小于阀值A
2  校验规则  A字段的值是否包含CSS样式
3  校验规则  A字段的值是否有乱码
4  校验规则  A字段值中汉字长度小于阀值A
5  校验规则  A字段值是否符合yyyy-MM-dd HH:mm:ss时间格式
6  校验规则  A字段值等于阀值A
7  校验规则  A字段值大于阀值A
8  校验规则  A字段值长度大于阀值A
9  校验规则  A字段值长度等于阀值A
10  校验规则  A字段的值是否包含JavaScript代码
11  校验规则  A字段值与字段B值相同
12  校验规则  A字段值包括规则库中配置阀值,或包括接口配置阀值A
13  校验规则  A字段值以规则库中配置阀值结尾,或以接口中阀值A结尾
14  校验规则  A字段值是否包含日期
15  清洗规则  A字段值内容格式化
16  清洗规则  A字段值包含阀值A时,则删除A字段值中阀值A字符串
17  清洗规则  A字段值包含阀值A字符时,直接丢弃
18  清洗规则  A字段值转义字符还原
19  矫正规则  A字段时间大于B字段时间,则A字段值=B字段值
20  矫正规则  A字段值包含阀值A,则:B字段值=阀值B
21  矫正规则  A字段值包含阀值A,则A字段值中的阀值A替换为阀值B

常见规则库逻辑实现示例:

如规则一:字段值长度小于阈值A

public Boolean isALengthLtB(MonitorRule mr, MonitorRuleRelation mrr,Object oneData) {
    //判断A字段及A阀值不为空
if (!StringUtils.isNotBlank(mrr.getInterAField())|| !StringUtils.isNotBlank(mrr.getThresholdA()))
        return false;
    Object aFieldValue = Reflect.getObjectXField(oneData, mrr.getInterAField());
//阀值A必须为数字;
    if (!BooleanRegular.isNumber(mrr.getThresholdA())) 
        return false;
    //判断字段A的值不为空;
    if (!StringUtils.isNotBlank(aFieldValue)) return false;
    Double value = Double.parseDouble(mrr.getThresholdA());  
    if (aFieldValue.toString().length() < value.intValue()) 
        return true;
    return false;


规则19:A字段时间大于B字段时间,则A字段值=B字段值

public Object aGTb(MonitorRule mr, MonitorRuleRelation mrr, Object oneData) {
    if (!StringUtils.isNotBlank(mrr.getInterAField())|| !StringUtils.isNotBlank(mrr.getInterBField()))
            return oneData;
        Object a = Reflect.getObjectXField(oneData, mrr.getInterAField());
        Object b = Reflect.getObjectXField(oneData, mrr.getInterBField());
        if (!StringUtils.isNotBlank(a) || !StringUtils.isNotBlank(b)) // 不为空
            return oneData;
        if (!BooleanRegular.isDate(a.toString())  || !BooleanRegular.isDate(b.toString())) 
            return oneData;
// 必须是19位时间格式;
        if (a.toString().length() == 19 && b.toString().length() == 19) {
            long aLong = DateUtil.stringToLong(a.toString(),
                    DateUtil.year_month_day_hour_mines_seconds);
            long bLong = DateUtil.stringToLong(b.toString(),
                    DateUtil.year_month_day_hour_mines_seconds);
            if (aLong > bLong) {
                oneData = Reflect.setObjectXField(oneData,mrr.getInterAField(), b);
            }
        }
        return oneData;
    }

system_flag:系统标识,用来标记监控规则属于哪个业务系统。
  scan_rule:监控规则,是可执行的SQL脚本,监控规则主要分两类,一类是单纯的数据校验规则,如检查是否为NULL、是否与字典表一致等;另一类是业务校验规则,有些数据从数据库角度出发是没有问题的,但是不一定符合业务逻辑,如项目的结项时间早于立项时间等。
  scan_rule_desc:监控规则描述信息,用来准确说明监控规则脚本的检查内容、检查逻辑等信息,供业务人员和技术人员详细了解监控规则含义。
  scan_object:监控对象,用来说明监控规则检查的数据对象或业务实体。
  check_type_name:检查类型名称,指监控规则检查数据质量的哪一种问题,如完整性、有效性、准确性、唯一性、一致性、合理性。
  scan_period:扫描周期,指该监控规则执行的频率,如每天、每周、每月。
  status:规则状态,指该监控规则是否启用,1表示启用,0表示关闭,监控引擎不会执行已经关闭的规则。
  last_scan_date:最近扫描时间,记录该规则上一次执行时间,用来和扫描周期联合计算当前时间该监控规则是否可执行。
  output_result:输出结果,指监控规则执行后输出的内容,让数据质量管理人员准确知道是什么数据存在问题,方便在业务系统中查找、修改。
  scan_scope:扫描范围,指监控规则扫描哪些业务数据,有并不是所有的业务数据都需要去检查,扫描范围在监控规则脚本中也有相应的体现。
  rule_level:规则级别,指该监控规则对应的数据质量问题对业务的影响程度,一般可分为高、中、低三个级别,高级别的数据质量问题必须在第一时间解决,否则会影响业务的正常开展。
  module_name:系统模块名称,指监控规则对应业务系统中哪个功能模块,主要用来将问题数据按系统功能模块来分类。
  charger_email:数据质量负责人邮箱,可以将该规则检查的结果发生到负责人邮箱中,方便查看问题数据。
  表2是监控结果表的数据结构,该表用来存放某监控规则在相应的扫描时间点检查出来的结果数据,通过scan_rule_id与监控规则表相关联就能知道结果数据的详细信息。
  表3是监控规则库中教学系统相关的一些监控规则实例,由于排版问题只列出规则的核心字段。

规则的计算与解析


很多时候我们会将规则,以表达式的形式存储在数据库中,这样有利于动态增减规则和动态修改,能够更方便的维护起来。但通常这种规则表达式的格式和存储要求就变得较为灵活。一般来说,java代码是无法自动识别和解析该规则的。因此将规则表达式转换为可执行的java代码变显得尤为重要。推荐使用规则引擎来完成对于规则表达式的转换和解析。如:drools、easyRules、

esper、groovy、Aviator、Jexl...

 

监控引擎(定时任务)



  监控引擎是数据质量监控平台的发动机,负责执行监控脚本并产生监控结果,监控引擎是一个可供调度程序定时执行的存储过程,需要部署在一个具有读取其他业务库的数据库用户下,监控引擎执行流程如图2所示,具体执行过程说明如下:

1.通过调度程序定时触发监控引擎执行,监控引擎可以根据实际情况灵活设置调度时间,一般设置在凌晨调度,减少对业务系统的影响。
2.监控引擎顺序读取规则库中的数据质量检查规则,判断规则是否有效、判断规则是否满足扫描周期。满足条件后执行检查规则,并将检查结果输出到结果表中。
3.一条规则执行完成后,更新该规则的last_scan_date(最近扫描时间)字段。
4.将监控规则执行是否成功记录到日志表,尤其是执行失败的规则,并将日志发送给系统管理员,以便及时修复问题。
5.执行完最后一条规则结束监控引擎的一次运行,同时将检查结果以报告的形式发送给相关业务人员。

 

数据推送统一接口逻辑处理


 一般来说我们会将满足触发规则,并且进行处理后的数据写入kafka,处理的结果有时候会是告警聚合结果,但也有时候会是告警明细详情记录。因此topic该存储些什么也需要根据业务要求和场景来决定。

① 接口服务ID
② 接口名称(方法名)
③ 接口接受请求时间
④ 推送结束时间
⑤ 接口接受数据量
⑥ 校验异常数据量
⑦ 推送kafka成功量
⑧ 推送kafka失败量
⑨ Kafka的Topic名称
⑩ 推送人(信源系统用户ID):以便快速定位采集人
⑪ 采集器ID:以便快速定位采集器,查询相关问题
或者:
jobId
vin码
事件名称
告警时间
监控类型
告警类型



告警的阈值规则与触发,及告知方式



无论存放在kafka里的数据是告警聚合值还是告警明显详情记录,一般情况下我们也不会直接通过邮件或飞书货打电话直接告知相关责任人。通常都是某些告警结果或者告警记录到达了一定的阈值条件或规则条件,才会真正的将告警信息通过邮件/飞书/电话等方式通知到相关责任人。

相关文章
|
存储 数据采集 数据挖掘
质量追溯系统方案
质量追溯系统方案
204 1
|
14天前
|
数据采集 传感器 数据管理
读数据质量管理:数据可靠性与数据质量问题解决之道04收集与清洗
【11月更文挑战第8天】本文介绍了数据收集的重要性和挑战,以及数据收集的方法和工具。数据收集是数据质量管理的基础,能够确保数据的完整性和准确性。然而,数据来源的多样性和数据丢失等问题也带来了挑战。文中还详细描述了内部系统、外部数据和传感器数据的收集方法,以及数据清洗的目标和流程,包括数据审查、问题数据处理和数据验证等步骤。
|
3月前
|
存储 数据采集 前端开发
ClkLog 实践中的挑战:如何设计和实施有效的埋点指标
前端数据埋点要怎么做才能获取到有用的数据并对运营产生积极的作用,对于首次实施埋点及数据分析的工程师来说确实是个难点。网上很多文章讲的都是方法论和理论知识,真正实践的内容比较少,我们从一个案例来描述一下埋点要如何做。
ClkLog 实践中的挑战:如何设计和实施有效的埋点指标
|
3月前
|
存储 监控 Devops
|
3月前
|
Java 测试技术 开发者
探索软件测试的多维度:从单元到系统,再到性能测试
本文深入探讨了软件测试的多个关键维度,包括单元测试、集成测试、系统测试以及性能测试。通过分析每个阶段的目标和方法,本文旨在帮助读者理解如何构建一个全面的测试策略,确保软件产品的质量与性能。我们将通过具体案例和数据来揭示不同测试阶段的重要性及其在软件开发生命周期中的作用。
96 0
|
4月前
|
运维 资源调度 监控
精准监控与自动化:提升运维效率的关键技术
在当今信息技术快速发展的背景下,运维管理越来越需要高效的监控和自动化工具来应对复杂的系统环境和服务需求。本文探讨了如何通过精准监控技术和自动化流程,提升运维效率并减少故障处理时间,从而实现IT基础设施的稳定性和可靠性。 【7月更文挑战第2天】
106 1
|
4月前
|
传感器 数据采集 存储
在环境治理领域,污染治理系统工程旨在通过系统的方法来解决环境污染问题。这通常包括污染源的识别、污染物的监测、治理技术的选择、治理效果的评估等多个环节。
在环境治理领域,污染治理系统工程旨在通过系统的方法来解决环境污染问题。这通常包括污染源的识别、污染物的监测、治理技术的选择、治理效果的评估等多个环节。
|
SQL 监控 安全
架构设计第五讲:数据巡检系统的设计与应用
架构设计第五讲:数据巡检系统的设计与应用
406 0
|
6月前
|
数据采集 存储 监控
聊聊大数据质量监控的那些事
聊聊大数据质量监控的那些事
217 0
|
存储 SQL 监控
生产在线监控SCADA系统设计与实现
生产在线监控SCADA系统设计与实现
下一篇
无影云桌面