轻喜到家基于 EMR-StarRocks 构建实时湖仓分析平台实践

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: 本文从轻喜到家的历史技术架构与痛点问题、架构升级需求与 OLAP 选型过程、最新技术架构及落地场景应用等方面,详细介绍了轻喜到家基于 EMR-StarRocks 构建实时湖仓分析平台实践经验。

2024年1月20日下午,轻喜到家大数据技术经理徐金龙在"阿里云 x StarRocks 云上极速湖仓"深圳 Meetup 上分享基于 EMR-StarRocks 构建实时湖仓分析平台实践



深圳轻喜到家科技有限公司是互联网+到家服务的创新型企业,在全国35个城市布局,在职员工数万人。轻喜到家基于互联网、物联网、AI人工智能的技术创新,结合中国家庭高品质、多样化的生活场景,打造了中国领先的家庭生活服务平台,为600万+家庭创造品质生活,提供全生命周期的到家服务。


历史架构介绍与痛点

轻喜到家使用 CDH 自建大数据平台,基于 Kudu+Impala 进行 OLAP 分析。由于数据来源复杂,涵盖场景较多,随着数据量增大,当前架构出现越来越多痛点问题:自建 CDH 集群运维成本高、权限控制较复杂、集群抖动频繁;Impala 内存溢出,资源开销没有好的优化方案;实时计算需求增多,T+1无法满足时效性要求;无法覆盖 OLAP 全场景,数据更新慢,查询 QPS 高。




客户具体需求与技术选型

从业务需求上,轻喜到家需要搭建计算能力强,查询速度快,运维成本低,方便易上手的实时分析平台:亚秒级的数据查询延迟;支持大宽表以及多表 join;多种数据模型设计;支持与 Hadoop 生态圈适配;支持 update、精准去重能力;具备高并发的能力;支持数据的流式和批式写入;支持标准化的 SQL。



根据业务需求,轻喜到家对比了 StarRocks、ClickHouse、Kylin 三种引擎之后,凭借 StarRocks 查询延迟低,并发能力好,横向扩展容易、维护简单,支持流批处理 ,优秀的 Join 能力等,最终选择基于 EMR StarRocks 构建实时分析平台。




EMR  Serverless StarRocks 主要技术优势

  • 查询性能

StarRocks 最大的优势就是查询性能。主要得益于列存,高效的 IO,高效的编码的存储,丰富的索引加速(包括前缀索引、Bitmap 倒排索引),物化视图的加速查询,全面的向量化,以及它的 MPP 的架构,通过并行执行中间结果不落盘的方式,能够让结果更快地跑出来,并且能够在集群规模扩大的时候带来性能的线性提升。


  • 多数据模型设计

丰富的模型,主要用到的是更新模型、主键模型,我们的很多场景依赖于实时 CDC 的数据,它对 CDC 流有着更好的实时更新性能。另外,它原生的分区分桶设计架构,能够利用到数据的冷热的存储,能够利用分区裁剪的性能去更好地提升查询性能。


  • 物化视图、外表

丰富的数据查询手段,数据仓库环境中的应用程序经常基于多个大表执行复杂查询,通常涉及多表之间数十亿行数据的关联和聚合。处理此类查询通常会大量消耗系统资源和时间,造成极高的查询成本。


轻喜到家现有技术架构及落地场景应用


现在 StarRocks 最重要的一个场景,就是 BI 报表、多维分析的场景。还是一个 Lambada 架构,会有一些原始数据,比如业务 DB,有一些业务的日志埋点数据,实时这部分链路是 Kafka 到 Flink,最终到 StarRocks,是分钟级的数据;离线部分是 Hive 架构,主要是以天级和小时级的数据放到 StarRocks,上层去对接报表的应用。


原本是用 MySQL 做 BI 报表的底座,但是在数据规模超到超过百万,遇到一些高技术维度、多维度的数据的时候,查询性能就会比较慢。所以用 StarRocks 替代 MySQL 来做多维分析,带来的提升非常明显。


同时,我们也有一些基于客户端的用户行为埋点数据。所以我们用 StarRocks 把用户行为分析进行了重构。利用到 StarRocks 查询加速的能力,去给用户提供事件的聚合数据,能提供 UserTrack 的一个能力。


基于 EMR StarRocks,轻喜到家搭建了实时湖仓分析平台,实现了整体技术架构的升级,为业务发展提供了强大的技术底座支撑。最后感谢 EMR StarRocks 团队同学的支持,希望未来继续紧密合作,合作共赢。





欢迎钉钉扫码加入EMR Serverless StarRocks交流群(搜索钉钉群号加群:24010016636)

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 大数据
构建数据中台,为什么“湖仓一体”成了大厂标配?
在大数据时代,数据湖与数据仓库各具优势,但单一架构难以应对复杂业务需求。湖仓一体通过融合数据湖的灵活性与数据仓的规范性,实现数据分层治理、统一调度,既能承载海量多源数据,又能支撑高效分析决策,成为企业构建数据中台、推动智能化转型的关键路径。
|
3月前
|
SQL 分布式计算 DataWorks
破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践
基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。
|
1月前
|
存储 自然语言处理 分布式计算
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
Apache Doris 3.1 正式发布!全面升级半结构化分析,支持 VARIANT 稀疏列与模板化 Schema,提升湖仓一体能力,增强 Iceberg/Paimon 集成,优化存储引擎与查询性能,助力高效数据分析。
288 4
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
|
2月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
204 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
3月前
|
分布式计算 Serverless OLAP
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
|
3月前
|
SQL DataWorks 关系型数据库
DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台
本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。
|
5月前
|
存储 缓存 分布式计算
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
本文将深入探讨基于 StarRocks 和 Iceberg 构建的云原生湖仓分析技术,详细解析两者结合如何实现高效的查询性能优化。内容涵盖 StarRocks Lakehouse 架构、与 Iceberg 的性能协同、最佳实践应用以及未来的发展规划,为您提供全面的技术解读。 作者:杨关锁,北京镜舟科技研发工程师
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
|
3月前
|
存储 SQL 分布式计算
MaxCompute x 聚水潭:基于近实时数仓解决方案构建统一增全量一体化数据链路
聚水潭作为中国领先的电商SaaS ERP服务商,致力于为88,400+客户提供全链路数字化解决方案。其核心ERP产品助力企业实现数据驱动的智能决策。为应对业务扩展带来的数据处理挑战,聚水潭采用MaxCompute近实时数仓Delta Table方案,有效提升数据新鲜度和计算效率,提效比例超200%,资源消耗显著降低。未来,聚水潭将进一步优化数据链路,结合MaxQA实现实时分析,赋能商家快速响应市场变化。
170 0
|
DataWorks 数据挖掘 Serverless
阿里云EMR Serverless StarRocks 内容合集
阿里云 EMR StarRocks 提供存算分离架构,支持实时湖仓分析,适用于多种 OLAP 场景。结合 Paimon 与 Flink,助力企业高效处理海量数据,广泛应用于游戏、教育、生活服务等领域,显著提升数据分析效率与业务响应速度。
188 0