从零开始学习 Java:简单易懂的入门指南之线程同步(三十五)

简介: 从零开始学习 Java:简单易懂的入门指南之线程同步(三十五)


1.线程同步

1.1卖票【应用】

  • 案例需求
    某电影院目前正在上映国产大片,共有100张票,而它有3个窗口卖票,请设计一个程序模拟该电影院卖票
  • 实现步骤
  • 定义一个类SellTicket实现Runnable接口,里面定义一个成员变量:private int tickets = 100;
  • 在SellTicket类中重写run()方法实现卖票,代码步骤如下
  • 判断票数大于0,就卖票,并告知是哪个窗口卖的
  • 卖了票之后,总票数要减1
  • 票卖没了,线程停止
  • 定义一个测试类SellTicketDemo,里面有main方法,代码步骤如下
  • 创建SellTicket类的对象
  • 创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称
  • 启动线程
  • 代码实现
public class SellTicket implements Runnable {
    private int tickets = 100;
    //在SellTicket类中重写run()方法实现卖票,代码步骤如下
    @Override
    public void run() {
        while (true) {
            if(ticket <= 0){
                    //卖完了
                    break;
                }else{
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    ticket--;
                    System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票");
                }
        }
    }
}
public class SellTicketDemo {
    public static void main(String[] args) {
        //创建SellTicket类的对象
        SellTicket st = new SellTicket();
        //创建三个Thread类的对象,把SellTicket对象作为构造方法的参数,并给出对应的窗口名称
        Thread t1 = new Thread(st,"窗口1");
        Thread t2 = new Thread(st,"窗口2");
        Thread t3 = new Thread(st,"窗口3");
        //启动线程
        t1.start();
        t2.start();
        t3.start();
    }
}

1.2卖票案例的问题

  • 卖票出现了问题
  • 相同的票出现了多次
  • 出现了负数的票
  • 问题产生原因
    线程执行的随机性导致的,可能在卖票过程中丢失cpu的执行权,导致出现问题

1.3同步代码块解决数据安全问题【应用】

  • 安全问题出现的条件
  • 是多线程环境
  • 有共享数据
  • 有多条语句操作共享数据
  • 如何解决多线程安全问题呢?
  • 基本思想:让程序没有安全问题的环境
  • 怎么实现呢?
  • 把多条语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可
  • Java提供了同步代码块的方式来解决
  • 同步代码块格式:
synchronized(任意对象) { 
  多条语句操作共享数据的代码 
}
  • synchronized(任意对象):就相当于给代码加锁了,任意对象就可以看成是一把锁
  • 同步的好处和弊端
  • 好处:解决了多线程的数据安全问题
  • 弊端:当线程很多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率
  • 代码演示
public class SellTicket implements Runnable {
    private int tickets = 100;
    private Object obj = new Object();
    @Override
    public void run() {
        while (true) {
            synchronized (obj) { // 对可能有安全问题的代码加锁,多个线程必须使用同一把锁
                //t1进来后,就会把这段代码给锁起来
                if (tickets > 0) {
                    try {
                        Thread.sleep(100);
                        //t1休息100毫秒
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    //窗口1正在出售第100张票
                    System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");
                    tickets--; //tickets = 99;
                }
            }
            //t1出来了,这段代码的锁就被释放了
        }
    }
}
public class SellTicketDemo {
    public static void main(String[] args) {
        SellTicket st = new SellTicket();
        Thread t1 = new Thread(st, "窗口1");
        Thread t2 = new Thread(st, "窗口2");
        Thread t3 = new Thread(st, "窗口3");
        t1.start();
        t2.start();
        t3.start();
    }
}

1.4同步方法解决数据安全问题【应用】

  • 同步方法的格式
    同步方法:就是把synchronized关键字加到方法上
修饰符 synchronized 返回值类型 方法名(方法参数) { 
  方法体;
}
  • 同步方法的锁对象是什么呢?
    this
  • 静态同步方法
    同步静态方法:就是把synchronized关键字加到静态方法上
修饰符 static synchronized 返回值类型 方法名(方法参数) { 
  方法体;
}
  • 同步静态方法的锁对象是什么呢?
    类名.class
  • 代码演示
public class MyRunnable implements Runnable {
    private static int ticketCount = 100;
    @Override
    public void run() {
        while(true){
            if("窗口一".equals(Thread.currentThread().getName())){
                //同步方法
                boolean result = synchronizedMthod();
                if(result){
                    break;
                }
            }
            if("窗口二".equals(Thread.currentThread().getName())){
                //同步代码块
                synchronized (MyRunnable.class){
                    if(ticketCount == 0){
                       break;
                    }else{
                        try {
                            Thread.sleep(10);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        ticketCount--;
                        System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票");
                    }
                }
            }
        }
    }
    private static synchronized boolean synchronizedMthod() {
        if(ticketCount == 0){
            return true;
        }else{
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            ticketCount--;
            System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticketCount + "张票");
            return false;
        }
    }
}
public class Demo {
      public static void main(String[] args) {
          MyRunnable mr = new MyRunnable();
          Thread t1 = new Thread(mr);
          Thread t2 = new Thread(mr);
          t1.setName("窗口一");
          t2.setName("窗口二");
          t1.start();
          t2.start();
      }
  }

1.5Lock锁【应用】

虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock

Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化

  • ReentrantLock构造方法
方法名 说明
ReentrantLock() 创建一个ReentrantLock的实例
  • 加锁解锁方法
方法名 说明
void lock() 获得锁
void unlock() 释放锁
  • 代码演示
public class Ticket implements Runnable {
    //票的数量
    private int ticket = 100;
    private Object obj = new Object();
    private ReentrantLock lock = new ReentrantLock();
    @Override
    public void run() {
        while (true) {
            //synchronized (obj){//多个线程必须使用同一把锁.
            try {
                lock.lock();
                if (ticket <= 0) {
                    //卖完了
                    break;
                } else {
                    Thread.sleep(100);
                    ticket--;
                    System.out.println(Thread.currentThread().getName() + "在卖票,还剩下" + ticket + "张票");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
            // }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        Ticket ticket = new Ticket();
        Thread t1 = new Thread(ticket);
        Thread t2 = new Thread(ticket);
        Thread t3 = new Thread(ticket);
        t1.setName("窗口一");
        t2.setName("窗口二");
        t3.setName("窗口三");
        t1.start();
        t2.start();
        t3.start();
    }
}

1.6死锁

  • 概述
    线程死锁是指由于两个或者多个线程互相持有对方所需要的资源,导致这些线程处于等待状态,无法前往执行
  • 什么情况下会产生死锁
  1. 资源有限
  2. 同步嵌套
  • 代码演示
public class Demo {
    public static void main(String[] args) {
        Object objA = new Object();
        Object objB = new Object();
        new Thread(()->{
            while(true){
                synchronized (objA){
                    //线程一
                    synchronized (objB){
                        System.out.println("小康同学正在走路");
                    }
                }
            }
        }).start();
        new Thread(()->{
            while(true){
                synchronized (objB){
                    //线程二
                    synchronized (objA){
                        System.out.println("小薇同学正在走路");
                    }
                }
            }
        }).start();
    }
}

2.生产者消费者

2.1生产者和消费者模式概述【应用】

  • 概述
    生产者消费者模式是一个十分经典的多线程协作的模式,弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。
    所谓生产者消费者问题,实际上主要是包含了两类线程:
    一类是生产者线程用于生产数据
    一类是消费者线程用于消费数据
    为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库
    生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为
    消费者只需要从共享数据区中去获取数据,并不需要关心生产者的行为
  • Object类的等待和唤醒方法
方法名 说明
void wait() 导致当前线程等待,直到另一个线程调用该对象的 notify()方法或 notifyAll()方法
void notify() 唤醒正在等待对象监视器的单个线程
void notifyAll() 唤醒正在等待对象监视器的所有线程

2.2生产者和消费者案例【应用】

  • 案例需求
  • 桌子类(Desk):定义表示包子数量的变量,定义锁对象变量,定义标记桌子上有无包子的变量
  • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
    1.判断是否有包子,决定当前线程是否执行
    2.如果有包子,就进入等待状态,如果没有包子,继续执行,生产包子
    3.生产包子之后,更新桌子上包子状态,唤醒消费者消费包子
  • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
    1.判断是否有包子,决定当前线程是否执行
    2.如果没有包子,就进入等待状态,如果有包子,就消费包子
    3.消费包子后,更新桌子上包子状态,唤醒生产者生产包子
  • 测试类(Demo):里面有main方法,main方法中的代码步骤如下
    创建生产者线程和消费者线程对象
    分别开启两个线程
  • 代码实现
public class Desk {
    //定义一个标记
    //true 就表示桌子上有汉堡包的,此时允许吃货执行
    //false 就表示桌子上没有汉堡包的,此时允许厨师执行
    public static boolean flag = false;
    //汉堡包的总数量
    public static int count = 10;
    //锁对象
    public static final Object lock = new Object();
}
public class Cooker extends Thread {
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while(true){
            synchronized (Desk.lock){
                if(Desk.count == 0){
                    break;
                }else{
                    if(!Desk.flag){
                        //生产
                        System.out.println("厨师正在生产汉堡包");
                        Desk.flag = true;
                        Desk.lock.notifyAll();
                    }else{
                        try {
                            Desk.lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Foodie extends Thread {
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
            //1. while(true)死循环
            //2. synchronized 锁,锁对象要唯一
            //3. 判断,共享数据是否结束. 结束
            //4. 判断,共享数据是否结束. 没有结束
        while(true){
            synchronized (Desk.lock){
                if(Desk.count == 0){
                    break;
                }else{
                    if(Desk.flag){
                        //有
                        System.out.println("吃货在吃汉堡包");
                        Desk.flag = false;
                        Desk.lock.notifyAll();
                        Desk.count--;
                    }else{
                        //没有就等待
                        //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                        try {
                            Desk.lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        /*消费者步骤:
        1,判断桌子上是否有汉堡包。
        2,如果没有就等待。
        3,如果有就开吃
        4,吃完之后,桌子上的汉堡包就没有了
                叫醒等待的生产者继续生产
        汉堡包的总数量减一*/
        /*生产者步骤:
        1,判断桌子上是否有汉堡包
        如果有就等待,如果没有才生产。
        2,把汉堡包放在桌子上。
        3,叫醒等待的消费者开吃。*/
        Foodie f = new Foodie();
        Cooker c = new Cooker();
        f.start();
        c.start();
    }
}

2.3生产者和消费者案例优化【应用】

  • 需求
  • 将Desk类中的变量,采用面向对象的方式封装起来
  • 生产者和消费者类中构造方法接收Desk类对象,之后在run方法中进行使用
  • 创建生产者和消费者线程对象,构造方法中传入Desk类对象
  • 开启两个线程
  • 代码实现
public class Desk {
    //定义一个标记
    //true 就表示桌子上有汉堡包的,此时允许吃货执行
    //false 就表示桌子上没有汉堡包的,此时允许厨师执行
    //public static boolean flag = false;
    private boolean flag;
    //汉堡包的总数量
    //public static int count = 10;
    //以后我们在使用这种必须有默认值的变量
   // private int count = 10;
    private int count;
    //锁对象
    //public static final Object lock = new Object();
    private final Object lock = new Object();
    public Desk() {
        this(false,10); // 在空参内部调用带参,对成员变量进行赋值,之后就可以直接使用成员变量了
    }
    public Desk(boolean flag, int count) {
        this.flag = flag;
        this.count = count;
    }
    public boolean isFlag() {
        return flag;
    }
    public void setFlag(boolean flag) {
        this.flag = flag;
    }
    public int getCount() {
        return count;
    }
    public void setCount(int count) {
        this.count = count;
    }
    public Object getLock() {
        return lock;
    }
    @Override
    public String toString() {
        return "Desk{" +
                "flag=" + flag +
                ", count=" + count +
                ", lock=" + lock +
                '}';
    }
}
public class Cooker extends Thread {
    private Desk desk;
    public Cooker(Desk desk) {
        this.desk = desk;
    }
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while(true){
            synchronized (desk.getLock()){
                if(desk.getCount() == 0){
                    break;
                }else{
                    //System.out.println("验证一下是否执行了");
                    if(!desk.isFlag()){
                        //生产
                        System.out.println("厨师正在生产汉堡包");
                        desk.setFlag(true);
                        desk.getLock().notifyAll();
                    }else{
                        try {
                            desk.getLock().wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Foodie extends Thread {
    private Desk desk;
    public Foodie(Desk desk) {
        this.desk = desk;
    }
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
            //1. while(true)死循环
            //2. synchronized 锁,锁对象要唯一
            //3. 判断,共享数据是否结束. 结束
            //4. 判断,共享数据是否结束. 没有结束
        while(true){
            synchronized (desk.getLock()){
                if(desk.getCount() == 0){
                    break;
                }else{
                    //System.out.println("验证一下是否执行了");
                    if(desk.isFlag()){
                        //有
                        System.out.println("吃货在吃汉堡包");
                        desk.setFlag(false);
                        desk.getLock().notifyAll();
                        desk.setCount(desk.getCount() - 1);
                    }else{
                        //没有就等待
                        //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                        try {
                            desk.getLock().wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        /*消费者步骤:
        1,判断桌子上是否有汉堡包。
        2,如果没有就等待。
        3,如果有就开吃
        4,吃完之后,桌子上的汉堡包就没有了
                叫醒等待的生产者继续生产
        汉堡包的总数量减一*/
        /*生产者步骤:
        1,判断桌子上是否有汉堡包
        如果有就等待,如果没有才生产。
        2,把汉堡包放在桌子上。
        3,叫醒等待的消费者开吃。*/
        Desk desk = new Desk();
        Foodie f = new Foodie(desk);
        Cooker c = new Cooker(desk);
        f.start();
        c.start();
    }
}

2.4阻塞队列基本使用

  • 阻塞队列继承结构

  • 常见BlockingQueue:
    ArrayBlockingQueue: 底层是数组,有界
    LinkedBlockingQueue: 底层是链表,无界.但不是真正的无界,最大为int的最大值
  • BlockingQueue的核心方法:
    put(anObject): 将参数放入队列,如果放不进去会阻塞
    take(): 取出第一个数据,取不到会阻塞
  • 代码示例
public class Demo02 {
    public static void main(String[] args) throws Exception {
        // 创建阻塞队列的对象,容量为 1
        ArrayBlockingQueue<String> arrayBlockingQueue = new ArrayBlockingQueue<>(1);
        // 存储元素
        arrayBlockingQueue.put("汉堡包");
        // 取元素
        System.out.println(arrayBlockingQueue.take());
        System.out.println(arrayBlockingQueue.take()); // 取不到会阻塞
        System.out.println("程序结束了");
    }
}

2.5阻塞队列实现等待唤醒机制

  • 案例需求
  • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
    1.构造方法中接收一个阻塞队列对象
    2.在run方法中循环向阻塞队列中添加包子
    3.打印添加结果
  • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
    1.构造方法中接收一个阻塞队列对象
    2.在run方法中循环获取阻塞队列中的包子
    3.打印获取结果
  • 测试类(Demo):里面有main方法,main方法中的代码步骤如下
    创建阻塞队列对象
    创建生产者线程和消费者线程对象,构造方法中传入阻塞队列对象
    分别开启两个线程
  • 代码实现
public class Cooker extends Thread {
    private ArrayBlockingQueue<String> bd;
    public Cooker(ArrayBlockingQueue<String> bd) {
        this.bd = bd;
    }
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while (true) {
            try {
                bd.put("汉堡包");
                System.out.println("厨师放入一个汉堡包");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
public class Foodie extends Thread {
    private ArrayBlockingQueue<String> bd;
    public Foodie(ArrayBlockingQueue<String> bd) {
        this.bd = bd;
    }
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
        //1. while(true)死循环
        //2. synchronized 锁,锁对象要唯一
        //3. 判断,共享数据是否结束. 结束
        //4. 判断,共享数据是否结束. 没有结束
        while (true) {
            try {
                String take = bd.take();
                System.out.println("吃货将" + take + "拿出来吃了");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        ArrayBlockingQueue<String> bd = new ArrayBlockingQueue<>(1);
        Foodie f = new Foodie(bd);
        Cooker c = new Cooker(bd);
        f.start();
        c.start();
    }
}

后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹

相关文章
|
5天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
35 6
|
18天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
14天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
14天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
38 3
|
15天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
18天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
26 2
|
18天前
|
监控 Java 开发者
Java线程管理:守护线程与本地线程的深入剖析
在Java编程语言中,线程是程序执行的最小单元,它们可以并行执行以提高程序的效率和响应性。Java提供了两种特殊的线程类型:守护线程和本地线程。本文将深入探讨这两种线程的区别,并探讨它们在实际开发中的应用。
25 1
|
29天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
20天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
20天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
下一篇
DataWorks