Bert PyTorch 源码分析:一、嵌入层

简介: Bert PyTorch 源码分析:一、嵌入层
# 标记嵌入就是最普通的嵌入层
# 接受单词ID输出单词向量
# 直接转发给了`nn.Embedding`
class TokenEmbedding(nn.Embedding):
    def __init__(self, vocab_size, embed_size=512):
        super().__init__(vocab_size, embed_size, padding_idx=0)
# 片段嵌入实际上是句子嵌入
# 接受单词所属句子的 ID,例如 [0, ..., 0, 1, ..., 1, 2, ..., 2]
# 输出句子向量,句子最多有三个(实际上只有两个?)
class SegmentEmbedding(nn.Embedding):
    def __init__(self, embed_size=512):
        super().__init__(3, embed_size, padding_idx=0)
# 位置嵌入接受单词ID,输出位置向量
class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=512):
        super().__init__()
        # 将嵌入矩阵初始化为 ML * ES 的全零矩阵
        pe = torch.zeros(max_len, d_model).float()
        # 不更新它的梯度
        pe.require_grad = False
        # 位置项,0 到 ML-1 的向量,并转型为 ML * 1
        position = torch.arange(0, max_len).float().unsqueeze(1)
        # 除法项
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
        # 将偶数列设为二者乘积的正弦值,奇数列设置为余弦值
        # 设计原理略过,见搜索引擎【*】
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        # 转型为 1 * ML * ES,因为位置对于每个句子都是一样的,便于它针对每个句子广播
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
    def forward(self, x):
        # 输入形状为 BS * ML
        # 返回前 ML 个位置向量
        return self.pe[:, :x.size(1)]
# 整体嵌入层,包含以上三部分
class BERTEmbedding(nn.Module):
    """
    BERT Embedding which is consisted with under features
        1. TokenEmbedding : normal embedding matrix
        2. PositionalEmbedding : adding positional information using sin, cos
        2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2)
        sum of all these features are output of BERTEmbedding
    """
    def __init__(self, vocab_size, embed_size, dropout=0.1):
        """
        :param vocab_size: total vocab size
        :param embed_size: embedding size of token embedding
        :param dropout: dropout rate
        """
        super().__init__()
    # 初始化三个嵌入子模块和 dropout
        self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size)
        self.position = PositionalEmbedding(d_model=self.token.embedding_dim)
        self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim)
        self.dropout = nn.Dropout(p=dropout)
        self.embed_size = embed_size
    def forward(self, sequence, segment_label):
        # `sequence`是单词 ID 的序列
        # `segment_label`是句子 ID 的序列,形状都是 BS * ML
        # 计算三个向量并相加,然后添加 dropout
        x = self.token(sequence) + self.position(sequence) + self.segment(segment_label)
        return self.dropout(x)
相关文章
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
91 0
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:四、编解码器
Bert Pytorch 源码分析:四、编解码器
83 0
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:三、Transformer块
Bert Pytorch 源码分析:三、Transformer块
73 0
|
6月前
|
PyTorch 算法框架/工具 C++
Bert Pytorch 源码分析:二、注意力层
Bert Pytorch 源码分析:二、注意力层
105 0
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
65 0
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
175 2
|
1月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
57 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
58 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
140 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
43 3
PyTorch 模型调试与故障排除指南