基于GoogleNet深度学习网络的花朵类型识别matlab仿真

简介: 基于GoogleNet深度学习网络的花朵类型识别matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
花朵类型识别是计算机视觉领域中的一个重要任务。它在植物学研究、农业、园艺等领域有着广泛的应用。传统的花朵类型识别方法通常基于手工设计的特征提取器,这些方法的效果受限于特征提取器的设计。近年来,深度学习在许多计算机视觉任务中取得了显著的成功。其中,GoogleNet是一种深度学习网络结构,它在图像分类任务中具有优异的性能。

3.1. GoogleNet网络结构
GoogleNet是一种基于Inception模块的深度学习网络结构。它通过引入Inception模块,增加了网络的宽度,并减少了网络的参数数量。GoogleNet的主要创新点包括:

Factorization into small convolutions:这种思想通过将一个较大的卷积核分解为多个较小的卷积核,减少了参数数量,并增加了网络的非线性表达能力。例如,将7x7的卷积核分解为1x7和7x1的卷积核,不仅可以减少参数数量,还可以增加网络的深度。
Inception Module:这个模块通过使用多个不同大小的卷积核并行地进行卷积操作,能够提取不同抽象程度的高阶特征。这些特征被拼接在一起,形成了更加丰富的特征表示。Inception Module的结构在网络的后部分出现,前面仍然是普通的卷积层。
去除全连接层:GoogleNet去除了传统CNN中的全连接层,使用1x1的卷积层来进行特征的降维和分类。这样可以大大减少参数数量,减轻过拟合的风险。
3.2. 基于GoogleNet的花朵类型识别
花朵类型识别的任务是将输入的花朵图像分类为不同的类别。使用GoogleNet进行花朵类型识别的步骤如下:

  数据准备:收集不同类别的花朵图像数据集,并对图像进行预处理,如归一化、尺寸调整等。

   网络训练:使用花朵图像数据集训练GoogleNet网络。在训练过程中,通过反向传播算法优化网络的参数,使得网络能够学习到花朵图像的特征表示。

   特征提取:训练完成后,可以使用GoogleNet网络对输入的花朵图像进行特征提取。通过前向传播,将图像输入到网络中,并提取出最后一层的特征表示。

  分类器设计:在得到花朵图像的特征表示后,可以设计一个分类器对其进行分类。可以使用简单的分类器,如softmax分类器。

   类别预测:使用训练好的分类器对测试集中的花朵图像进行类别预测,并评估模型的性能。

   通过基于GoogleNet的深度学习方法,我们可以有效地识别花朵的类型,为植物学研究、农业、园艺等领域提供有力的支持。

4.部分核心程序

```Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Dataset);

%显示各个花朵的整体识别率
% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Training_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);

lab1 = [];
for i = 1:length(Dataset.Labels)
if Dataset.Labels(i) == 'daisy'
lab1 = [lab1,1];
end
if Dataset.Labels(i) == 'dandelion'
lab1 = [lab1,2];
end
if Dataset.Labels(i) == 'roses'
lab1 = [lab1,3];
end
if Dataset.Labels(i) == 'sunflowers'
lab1 = [lab1,4];
end
if Dataset.Labels(i) == 'tulips'
lab1 = [lab1,5];
end
end

lab2 = [];
for i = 1:length(Predicted_Label)
if Predicted_Label(i) == 'daisy'
lab2 = [lab2,1];
end
if Predicted_Label(i) == 'dandelion'
lab2 = [lab2,2];
end
if Predicted_Label(i) == 'roses'
lab2 = [lab2,3];
end
if Predicted_Label(i) == 'sunflowers'
lab2 = [lab2,4];
end
if Predicted_Label(i) == 'tulips'
lab2 = [lab2,5];
end
end

figure;
plot(lab1,'b-s',...
'LineWidth',1,...
'MarkerSize',8,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(lab2,'r-->',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
title(['识别率',num2str(100*accuracy),'%']);
legend('真实种类','识别种类');
title('1:daisy, 2:dandelion, 3:roses, 4:sunflowers, 5:tulips');

% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Training_Dataset.Files), 12);

figure
for i = 1:12% 在子图中展示每张图像、预测标签和概率
subplot(3,4,i)
I = readimage(Dataset, index(i));% 读取图像
imshow(I) % 显示图像
label = Predicted_Label(index(i));% 预测标签
title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end

```

相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
28 20
|
1天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
25 12
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)