基于GoogleNet深度学习网络的花朵类型识别matlab仿真

简介: 基于GoogleNet深度学习网络的花朵类型识别matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
花朵类型识别是计算机视觉领域中的一个重要任务。它在植物学研究、农业、园艺等领域有着广泛的应用。传统的花朵类型识别方法通常基于手工设计的特征提取器,这些方法的效果受限于特征提取器的设计。近年来,深度学习在许多计算机视觉任务中取得了显著的成功。其中,GoogleNet是一种深度学习网络结构,它在图像分类任务中具有优异的性能。

3.1. GoogleNet网络结构
GoogleNet是一种基于Inception模块的深度学习网络结构。它通过引入Inception模块,增加了网络的宽度,并减少了网络的参数数量。GoogleNet的主要创新点包括:

Factorization into small convolutions:这种思想通过将一个较大的卷积核分解为多个较小的卷积核,减少了参数数量,并增加了网络的非线性表达能力。例如,将7x7的卷积核分解为1x7和7x1的卷积核,不仅可以减少参数数量,还可以增加网络的深度。
Inception Module:这个模块通过使用多个不同大小的卷积核并行地进行卷积操作,能够提取不同抽象程度的高阶特征。这些特征被拼接在一起,形成了更加丰富的特征表示。Inception Module的结构在网络的后部分出现,前面仍然是普通的卷积层。
去除全连接层:GoogleNet去除了传统CNN中的全连接层,使用1x1的卷积层来进行特征的降维和分类。这样可以大大减少参数数量,减轻过拟合的风险。
3.2. 基于GoogleNet的花朵类型识别
花朵类型识别的任务是将输入的花朵图像分类为不同的类别。使用GoogleNet进行花朵类型识别的步骤如下:

  数据准备:收集不同类别的花朵图像数据集,并对图像进行预处理,如归一化、尺寸调整等。

   网络训练:使用花朵图像数据集训练GoogleNet网络。在训练过程中,通过反向传播算法优化网络的参数,使得网络能够学习到花朵图像的特征表示。

   特征提取:训练完成后,可以使用GoogleNet网络对输入的花朵图像进行特征提取。通过前向传播,将图像输入到网络中,并提取出最后一层的特征表示。

  分类器设计:在得到花朵图像的特征表示后,可以设计一个分类器对其进行分类。可以使用简单的分类器,如softmax分类器。

   类别预测:使用训练好的分类器对测试集中的花朵图像进行类别预测,并评估模型的性能。

   通过基于GoogleNet的深度学习方法,我们可以有效地识别花朵的类型,为植物学研究、农业、园艺等领域提供有力的支持。

4.部分核心程序

```Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Dataset);

%显示各个花朵的整体识别率
% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Training_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);

lab1 = [];
for i = 1:length(Dataset.Labels)
if Dataset.Labels(i) == 'daisy'
lab1 = [lab1,1];
end
if Dataset.Labels(i) == 'dandelion'
lab1 = [lab1,2];
end
if Dataset.Labels(i) == 'roses'
lab1 = [lab1,3];
end
if Dataset.Labels(i) == 'sunflowers'
lab1 = [lab1,4];
end
if Dataset.Labels(i) == 'tulips'
lab1 = [lab1,5];
end
end

lab2 = [];
for i = 1:length(Predicted_Label)
if Predicted_Label(i) == 'daisy'
lab2 = [lab2,1];
end
if Predicted_Label(i) == 'dandelion'
lab2 = [lab2,2];
end
if Predicted_Label(i) == 'roses'
lab2 = [lab2,3];
end
if Predicted_Label(i) == 'sunflowers'
lab2 = [lab2,4];
end
if Predicted_Label(i) == 'tulips'
lab2 = [lab2,5];
end
end

figure;
plot(lab1,'b-s',...
'LineWidth',1,...
'MarkerSize',8,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(lab2,'r-->',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
title(['识别率',num2str(100*accuracy),'%']);
legend('真实种类','识别种类');
title('1:daisy, 2:dandelion, 3:roses, 4:sunflowers, 5:tulips');

% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Training_Dataset.Files), 12);

figure
for i = 1:12% 在子图中展示每张图像、预测标签和概率
subplot(3,4,i)
I = readimage(Dataset, index(i));% 读取图像
imshow(I) % 显示图像
label = Predicted_Label(index(i));% 预测标签
title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end

```

相关文章
|
6天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
光互联
常见网络电缆类型详解
【10月更文挑战第14天】
61 0
|
10天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
14 8
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
6天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
下一篇
无影云桌面