开源MySQL在倚天ECS上的最佳优化实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 我们总结了在倚天上自建MySQL的基本优化手段,并在阿里云ECS G8y实例(基于Armv9的倚天710处理器)和G8i实例(x86)上做了开源8.0.34版本的MySQL的性能测试对比,优化后MySQL在G8y上的性能相对于未优化在G8i上的性能在只读场景有63%的性能优势,在读写混合场景有35%的性能优势;相对于优化后的G8i仍能保持只读场景20%的性能优势,读写混合场景5%的性能优势。

MySQL是一个开源的关系型数据库管理系统(Relational Database Management System,RDBMS),是业界最流行的RDBMS之一,广泛用于Web应用程序的后端数据存储。它是一种轻量级、快速、可靠的数据库解决方案,被广泛应用于各个行业领域,包括电子商务、金融服务、制造业和社交媒体等。

MySQL具有很高的可扩展性和稳定性,能够应对大规模数据存储和处理需求。它支持复杂的查询语言,事务处理和数据安全功能,为开发人员提供了一个强大的工具来管理和操作大规模数据。

与Redis等内存型数据库不同,MySQL的数据通常存储在磁盘上,这意味着它可以处理大量数据并且不会受到内存容量的限制。在生产环境中,MySQL通常部署在高性能的服务器上,以确保系统的稳定性和性能。它能够处理大量的并发请求,并提供高吞吐量的数据处理能力。

mysql架构.png

基于倚天710的数据中心服务器具备很强的单核计算能力,我们也通过微架构、编译、内核、操作系统、应用层等的全面优化大大提升了MySQL在倚天上的性能。

在本文中,我们总结了在倚天上自建MySQL的基本优化手段,并在阿里云ECS G8y实例(基于Armv9的倚天710处理器)和G8i实例(x86)上做了开源8.0.34版本的MySQL的性能测试对比,优化后MySQL在G8y上的性能相对于未优化在G8i上的性能在只读场景有63%的性能优势,在读写混合场景有35%的性能优势;相对于优化后的G8i仍能保持只读场景20%的性能优势,读写混合场景5%的性能优势。

mysql优化.png

优化手段

平头哥解决方案应用优化团队对MySQL应用进行了自顶向下的全面优化,具体包括应用层参数优化、系统层及OS层配置优化、编译器层优化、微架构分析优化、硬件能力优化等。

  • 应用层:
  • 对MySQL应用侧关键参数进行分析,针对倚天机器进行适配优化。结合当前机器内存、cache等配置合适的buffer size、innodb pool size、logfile等方式激发硬件性能潜力。
  • 系统及OS层:
  • 通过分析MySQL运行时系统特征,针对应用侧无关的系统参数如调度参数等进行优化,提升CPU利用率,最大程度发挥倚天性能优势。
  • 通过开启代码段大页,将应用程序代码段 (.text) 通过file THP映射,减少TLB entry开销,显著降低iTLB miss,降低了整个系统中的资源竞争。
  • 编译器层:
  • 启用LSE指令扩展,使用原生的CAS 等指令实现数据库的原子操作,优化了加锁、解锁等操作的性能,极大提高了数据库高并发场景下的性能。
  • 使用链接时优化(LTO)技术,扩展了编译器过程间分析的范围,全局优化数据库代码。
  • 对OS内核及MySQL服务端应用进行PGO优化。通过更优的代码冷热重新布局,降低在典型场景运行时应用的Frontend Bound。
  • 微架构分析优化:
  • 基于解决方案团队自主研发的Micro-Optimizer微架构分析优化工具,通过抓取运行时指令流,进行分支跳转分析,建立基于Basic Block的分析模型,可以获取更精确的代码冷热情况,可以在PGO的基础上进一步降低i-cache miss率。
  • 基于Micro-Optimizer,通过对指令流中的ldr str等访存指令进行分析建模,通过配置硬件参数进行仿真或直接采样抓取SPE数据的方式可以获取应用在运行时的d-cache miss情况。抓取热点并通过合适的指令预取或缓存锁定优化手段可针对特定PC进行缓存优化,从而降低应用整体d-cache miss率,进而在微架构层面降低backend bound。

micro-optimizer架构.png

  • 硬件能力优化:
  • 通过合适的硬件预取策略配置,可以进一步发挥倚天710的硬件能力。数据库的内存访问与常见workload不同,访问模式更加随机,不适合通用的数据预取策略。在数据库场景下,过于激进的数据预取可能无法提高缓存命中率,反而会增加内存带宽的使用,并且在缓存中填充无效的数据。调整预取策略,为缓存设置合理的指令预留,能给MySQL带来显著的性能收益。

综合以上各种不同层面的优化,可以在自建的开源版本MySQL同样达到很高的性能水平。其中有部分优化手段也适用于x86,我们在x86上也进行了同样的优化,也获取了一定的性能收益,但是综合来看在倚天上优化效果更佳,性能也最终得以反超x86。

测试环境及结果

我们使用sysbench作为负载生成器和性能基准测试工具。在数据库领域中,Sysbench经常被用来测试各种数据库管理系统(如MySQL、PostgreSQL等)在不同负载下的性能表现。它可以模拟并发用户访问数据库,测量数据库的读写能力、事务处理性能和并发连接处理能力等指标。

配置说明

benchmark客户端使用了一个单独的ECS.G7.8xlarge实例。

两种服务端ECS实例类型配置如下:

Processor

ECS Type

Yitian 710

G8y.2xlarge

x86 cpu

G8i.2xlarge

MySQL软件版本:

Component Name

Version

MySQL

8.0.34

GCC version

10.2.1 20200825 (Alibaba 10.2.1-3.5 2.32)

Sysbench

1.0.20

Operating System

5.10.134-0.git.e660833cf.al8.aarch64

Sysbench测试参数:

Test Config Parameter

Value

Number of Thread

64

Number of Tables

32

Table Size

25000

Test Time

1200

Event

oltp_read_only/oltp_read_write/oltp_write_only

我们将MySQL优化手段集成在ptg-accelerator中,可以在自建MySQL基础上一键调优。

注意部分优化手段也可应用在G8i上,但是整体收益依然不如G8y

TPS性能数据


G8i.2xlarge

G8y.2xlarge

Perf benifit gain

Read Only

Read Write

Read Only

Read Write

Read Only

Read Write

基础性能

7253.02

5204.89

6638.50

3934.25

-8.47%

-24.40%

调优后性能

9904.48

6686.58

11822.05

6990.4

19.36%

4.54%

read_only优化.pngread_write优化.png

微架构性能数据

这里对比了在倚天环境优化前后的前后端微架构指标变化数据。

指标说明:

  • Frontend Stall-Rate = Frontend Stalls / (Frontend Stalls + Backend Stalls)
  • Backend Stall-Rate = Backend Stalls / (Frontend Stalls + Backend Stalls)
  • 基准场景的Instruction TLB Miss、Instruction L1 Miss、Branch Miss、Data TLB Miss、Data L1 Cache Miss、Data L2 Cache Miss都设置为100%,方便优化状态下作对比。
  • 优化场景的以上数据为[优化/基准]的结果,以更方便地体现优化的比例

可以看到经过我们整体的优化,MySQL在g8y上的微架构性能表现有明显的提升

  • 前端Bound的比例有一定的降低,在Instruction TLB Miss率上相对优化前有43.9%的提升,Instruction L1 Miss率相对优化前有25.8%的提升,Branch Miss率相对优化前有 56.3%的提升。
  • 后端数据也体现出一定的性能提升,Data TLB Miss率相对优化前有47.3%的提升,Data L2 Cache Miss率有18.5%的提升。

frontend.pngbackend.png

总结

通过优化MySQL在倚天上的性能达到并反超x86的性能水平,叠加倚天在价格上的优势可获取更高的性价比优势。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5天前
|
存储 缓存 前端开发
如何优化 SSR 应用以减少服务器压力
优化SSR应用以减少服务器压力,可采用代码分割、缓存策略、数据预加载、服务端性能优化、使用CDN、SSR与SSG结合、限制并发请求、SSR与CSR平滑切换、优化前端资源及利用框架特性等策略。这些方法能有效提升性能和稳定性,同时保证用户体验。
|
8天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
7天前
|
监控 PHP Apache
优化 PHP-FPM 参数配置:实现服务器性能提升
优化PHP-FPM的参数配置可以显著提高服务器的性能和稳定性。通过合理设置 `pm.max_children`、`pm.start_servers`、`pm.min_spare_servers`、`pm.max_spare_servers`和 `pm.max_requests`等参数,并结合监控和调优措施,可以有效应对高并发和负载波动,确保Web应用程序的高效运行。希望本文提供的优化建议和配置示例能够帮助您实现服务器性能的提升。
23 3
|
9天前
|
关系型数据库 MySQL Linux
Linux环境下MySQL数据库自动定时备份实践
数据库备份是确保数据安全的重要措施。在Linux环境下,实现MySQL数据库的自动定时备份可以通过多种方式完成。本文将介绍如何使用`cron`定时任务和`mysqldump`工具来实现MySQL数据库的每日自动备份。
27 3
|
8天前
|
存储 监控 关系型数据库
MySQL自增ID耗尽解决方案:应对策略与实践技巧
在MySQL数据库中,自增ID(AUTO_INCREMENT)是一种特殊的属性,用于自动为新插入的行生成唯一的标识符。然而,当自增ID达到其最大值时,会发生什么?又该如何解决?本文将探讨MySQL自增ID耗尽的问题,并提供一些实用的解决方案。
15 1
|
13天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
40 3
|
15天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
38 1
|
17天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
83 1
|
20天前
|
存储 弹性计算 NoSQL
"从入门到实践,全方位解析云服务器ECS的秘密——手把手教你轻松驾驭阿里云的强大计算力!"
【10月更文挑战第23天】云服务器ECS(Elastic Compute Service)是阿里云提供的基础云计算服务,允许用户在云端租用和管理虚拟服务器。ECS具有弹性伸缩、按需付费、简单易用等特点,适用于网站托管、数据库部署、大数据分析等多种场景。本文介绍ECS的基本概念、使用场景及快速上手指南。
62 3
|
22天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
52 5

相关产品

  • 云服务器 ECS
  • 云数据库 RDS MySQL 版