【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)

简介: 【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)

1.什么是极值搜索控制?

首先明确一下,对于y=f(x),f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。

极值搜索,顾名思义,就是找到极小值点或者极大值点,过程就是不断地调整控制系统参数,使得性能指标达到最优,找到极值点。

Matlab官方有个15分钟左右的视频,一步步地解释了极值搜索控制的原理,并且做了仿真实验,我觉得讲得挺清晰的,非常适合入门

👉 What is Extremum Seeking Control | Learning-Based Control

The Extremum Seeking Control block tunes controller parameters to maximize an objective function. Extremum seeking controllers are model-free adaptive controllers that are useful for adapting to unknown system dynamics and unknown mappings from control parameters to an objective function. When seeking multiple parameters, the Extremum Seeking Control block uses a separate tuning loop for each parameter.

The Extremum Seeking Control block searches for optimal control parameters by modulating (perturbing) the parameters with sinusoidal signals and demodulating the resulting perturbed objective function.

🌟 通俗解释:

通俗地讲,极值搜索控制的输入其实是控制性能指标,也就是原来系统的输出,我们求解的就是系统输出达到极值时对应的极值点。对于寻找极大值的系统,如果输入和输出同时增加,表明系统正朝着极值的方向前进,则继续加大输入,反之则减小输入;对于寻找极小值的系统,如果输入和输出同时增加,表明系统正朝着极值的反方向前进,则减小输入,反之则增大输入。简而言之,寻找极大值和极小值的系统略有不同,而输入和输出的同时变化,可以用相乘然后取积分衡量。

🌟 极值搜索的优缺点

极值搜索是一种基于非模型(无模型/数据驱动)的实时优化方法,适用于解决动态问题,特别是当人们对一个系统的认识相当有限的时候。例如在实际控制系统中,由于控制系统参数的不确定性和实时变化的特点,使得参考量与输出量之间的函数关系很难被知晓。但只要特性曲线具有先增后减或者先减后增特点(即存在峰值),极值搜索控制算法就可以根据系统特性曲线的上述形状特性来到达峰值点,并使其自适应影响系统的因素变化,提高控制策略的鲁棒性。

极值搜索不仅可以应用在单变量寻优,还能应用在多变量上面。

缺点:局部最优;需要调节的参数比较多。

相关文章
|
算法
m基于Simulink的自适应模糊控制器设计与仿真实现
m基于Simulink的自适应模糊控制器设计与仿真实现
230 0
m基于Simulink的自适应模糊控制器设计与仿真实现
|
机器学习/深度学习 传感器 算法
【PID优化】基于正余弦算法 (SCA)优化PID实现微型机器人系统位置控制附simulink模型和matlab代码
【PID优化】基于正余弦算法 (SCA)优化PID实现微型机器人系统位置控制附simulink模型和matlab代码
|
2月前
|
机器学习/深度学习 流计算
基于simulink的直接转矩控制方法建模与性能仿真
本研究基于Simulink实现直接转矩控制(DTC)建模与仿真,采用电压空间矢量控制及Park、Clark变换,实现电机磁场定向控制。系统通过磁链观测器、转矩估计器等模块,精确控制电机转矩和磁链,提高控制性能。MATLAB2022a版本实现核心程序与模型。
|
6月前
|
算法
自适应PID控制器的simulink建模与仿真
本研究实现PID控制器参数(kp, ki, kd)的自适应调整,达成最优控制并展示参数收敛过程。MATLAB2022a环境下仿真结果显示,参数经调整后趋于稳定,控制器输出平滑,误差显著降低。自适应PID通过实时监测系统性能自动优化参数,有效应对不确定性,维持系统稳定及高性能。采用不同优化算法调整PID参数,确保最佳控制效果。
|
3月前
|
算法
基于模糊PID控制器的的无刷直流电机速度控制simulink建模与仿真
本课题基于模糊PID控制器对无刷直流电机(BLDCM)进行速度控制的Simulink建模与仿真。该系统融合了传统PID控制与模糊逻辑的优势,提高了BLDCM的速度动态响应、抗干扰能力和稳态精度。通过模糊化、模糊推理和解模糊等步骤,动态调整PID参数,实现了对电机转速的精确控制。适用于多种工况下的BLDCM速度控制应用。
自适应模型预测控制器AMPC的simulink建模与仿真
通过Simulink内嵌Matlab实现自适应MPC控制器,结合系统模型与控制对象完成仿真。面对日益复杂的工业过程,AMPC融合MPC与自适应控制优势,依据系统变化自动调节参数,确保优化控制及鲁棒性。MPC通过预测模型优化控制序列;自适应控制则动态调整控制器以应对不确定性。AMPC适用于多变环境下高性能控制需求,如化工、航空及智能交通系统。[使用MATLAB 2022a]
|
算法
积分分离PID控制仿真实验(计控实验三simulink)
积分分离PID控制仿真实验(计控实验三simulink)
528 0
积分分离PID控制仿真实验(计控实验三simulink)
最小拍有纹波系统仿真实验(计控实验四simulink)
最小拍有纹波系统仿真实验(计控实验四simulink)
687 0
最小拍有纹波系统仿真实验(计控实验四simulink)
【Simulink】查找模块的四种方法
【Simulink】查找模块的四种方法
2698 0
|
算法
基于simulink的自适应PID控制器仿真
基于simulink的自适应PID控制器仿真
375 0
基于simulink的自适应PID控制器仿真

热门文章

最新文章