【MFAC】基于全格式动态线性化的无模型自适应控制

简介: 【MFAC】基于全格式动态线性化的无模型自适应控制

来源:侯忠生教授的《无模型自适应控制:理论与应用》(2013年科学出版社)。

👉对应书本 3.4 单输入单输出系统(SISO)全格式动态线性化(FFDL) 和 4.4 单输入单输出系统(SISO)全格式动态线性化(FFDL)的无模型自适应控制(MFAC)

PFDL仅考虑了在下一时刻的系统输出变化量与当前时刻的一个固定长度滑动时间窗口内的输入变化量之间的动态时变关系,而FFDL还考虑了当前时刻的具有某个长度的滑动时间窗口内的所有控制输入变化量和系统输出变化量对下一时刻的系统输出变化量的影响。

FFDL

全格式动态线性化

(full form dynamic linearization)

数据模型:

Δ y ( k + 1 ) = ϕ f , L y , L u T ( k ) Δ H L y , L u ( k ) \Delta y\left( {k + 1} \right) = \phi_{f,L_{y},L_{u}}^{T}(k)\Delta H_{L_{y},L_{u}}(k)Δy(k+1)=ϕf,Ly,LuT(k)ΔHLy,Lu(k)

伪偏导(PPD) ϕ f , L y , L u ( k ) \phi_{f,L_{y},L_{u}}(k)ϕf,Ly,Lu(k) 的下标 f 表示full

L y L_yLyL u L_uLu 为伪阶数,0 ≤ L y ≤ n y 0≤L_y≤n_y0Lyny1 ≤ L u ≤ n u 1≤L_u≤n_u1Lunu.

L y = 0 L_y=0Ly=0L u = L L_u=LLu=L 时,FFDL数据模型可变为PFDL数据模型;

L y = 0 L_y=0Ly=0L u = 1 L_u=1Lu=1 时,FFDL数据模型可变为CFDL数据模型。

ϕ f , L y , L u ( k ) = [ ϕ 1 ( k ) , ϕ 2 ( k ) , … , ϕ L y ( k ) , ϕ L y + 1 ( k ) , … , ϕ L y + L u ( k ) ] T \phi_{f,L_{y},L_{u}}(k) = \left\lbrack {\phi_{1}(k),\phi_{2}(k),\ldots{,\phi}_{L_{y}}(k),\phi_{L_{y} + 1}(k),\ldots,\phi_{L_{y} + L_{u}}(k)} \right\rbrack^{T}ϕf,Ly,Lu(k)=[ϕ1(k),ϕ2(k),,ϕLy(k),ϕLy+1(k),,ϕLy+Lu(k)]T

Δ H L y , L u ( k ) = [ Δ y ( k ) , … , Δ y ( k − L y + 1 ) , Δ u ( k ) , … , Δ u ( k − L u + 1 ) ] T \Delta H_{L_{y},L_{u}}(k) = \left\lbrack {\Delta y(k),\ldots,\Delta y\left( {k - L_{y} + 1} \right),\Delta u(k),\ldots,\Delta u\left( {k - L_{u} + 1} \right)} \right\rbrack^{T}ΔHLy,Lu(k)=[Δy(k),,Δy(kLy+1),Δu(k),,Δu(kLu+1)]T

SISO-FFDL-MFAC

学习控制律

u ( k ) = u ( k − 1 ) + ρ L y + 1 ϕ L y + 1 ( k ) [ y ∗ ( k + 1 ) − y ( k ) ] ∣ ϕ L y + 1 ( k ) ∣ 2 + λ − ϕ L y + 1 ( k ) ∑ i = 1 L y ρ i ϕ i ( k ) Δ u ( k − i + 1 ) ∣ ϕ L y + 1 ( k ) ∣ 2 + λ − ϕ L y + 1 ( k ) ∑ i = L y + 2 L u + L y ρ i ϕ i ( k ) Δ u ( k − L y − i + 1 ) ∣ ϕ L y + 1 ( k ) ∣ 2 + λ u(k) = u\left( {k - 1} \right) + \frac{\rho_{L_{y} + 1}\phi_{L_{y} + 1}(k)\left\lbrack {y^{*}\left( {k + 1} \right) - y(k)} \right\rbrack}{\left| \phi_{L_{y} + 1}(k) \right|^{2} + \lambda} - \frac{\phi_{L_{y} + 1}(k){\sum\limits_{i = 1}^{L_{y}}\rho_{i}}\phi_{i}(k)\Delta u(k - i + 1)}{\left| \phi_{L_{y} + 1}(k) \right|^{2} + \lambda} - \frac{\phi_{L_{y} + 1}(k){\sum\limits_{i = L_{y} + 2}^{L_{u} + L_{y}}\rho_{i}}\phi_{i}(k)\Delta u\left( k - L_{y} - i + 1 \right)}{\left| \phi_{L_{y} + 1}(k) \right|^{2} + \lambda}u(k)=u(k1)+ϕLy+1(k)2+λρLy+1ϕLy+1(k)[y(k+1)y(k)]ϕLy+1(k)2+λϕLy+1(k)i=1Lyρiϕi(k)Δu(ki+1)ϕLy+1(k)2+λϕLy+1(k)i=Ly+2Lu+Lyρiϕi(k)Δu(kLyi+1)

步长因子 ρ ∈ ( 0 , 1 ] ( i = 1 , 2 , . … , L y + L u ) ρ∈(0,1] (i= 1,2, .… , L_y+L_u)ρ(0,1](i=1,2,.,Ly+Lu)

PPD参数估计算法

{ ϕ ^ f , L y , L u ( k ) = ϕ ^ f , L y , L u ( k − 1 ) + η Δ H L y , L u ( k − 1 ) μ + ∣ | Δ H L y , L u ( k − 1 ) | ∣ 2 [ Δ y ( k ) − ϕ ^ f , L y , L u T ( k − 1 ) Δ H L y , L u ( k − 1 ) ] \{\hat{\phi}_{f,L_{y},L_{u}}(k) = {\hat{\phi}}_{f,L_{y},L_{u}}\left( {k - 1} \right) + \frac{\eta\Delta H_{L_{y},L_{u}}\left( {k - 1} \right)}{\mu + \left| \middle| \Delta H_{L_{y},L_{u}}\left( {k - 1} \right) \middle| \right|^{2}}\left\lbrack \Delta y(k) - {\hat{\phi}}_{f,L_{y},L_{u}}^{T}(k - 1)\Delta H_{L_{y},L_{u}}\left( {k - 1} \right) \right\rbrack{ϕ^f,Ly,Lu(k)=ϕ^f,Ly,Lu(k1)+μ+ΔHLy,Lu(k1)2ηΔHLy,Lu(k1)[Δy(k)ϕ^f,Ly,LuT(k1)ΔHLy,Lu(k1)]

其中,μ>0为权重因子,为了让控制算法更具一般性,引入步长因子 η∈(0,2] .

PPD参数重置算法

如果

∥ ϕ f , L y , L u ^ ( k ) ∥ ≤ ε \left \| {\hat{\phi_{f,L_{y},L_{u}}}(k)} \right \| \leq \varepsilonϕf,Ly,Lu^(k)ε

∥ Δ H L y , L u ∥ ≤ ε \left \| {\Delta H_{L_{y},L_{u}}} \right \| \leq \varepsilonΔHLy,Luε

s i g n ( ϕ f , L y , L u ^ ( k ) ) ≠ s i g n ( ϕ f , L y , L u ^ ( 1 ) ) sign\left( {\hat{\phi_{f,L_{y},L_{u}}}(k)} \right) \neq sign\left( {\hat{\phi_{f,L_{y},L_{u}}}(1)} \right)sign(ϕf,Ly,Lu^(k))=sign(ϕf,Ly,Lu^(1))

ϕ f , L y , L u ^ ( k ) = ϕ f , L y , L u ^ ( 1 ) \hat{\phi_{f,L_{y},L_{u}}}(k) = \hat{\phi_{f,L_{y},L_{u}}}(1)ϕf,Ly,Lu^(k)=ϕf,Ly,Lu^(1)

算法重置机制的引入是为了使PPD估计算法具有更强的对时变参数的跟踪能力。

仿真实验

【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)

相关文章
|
6月前
|
SQL 开发框架 算法
【MFAC】基于偏格式动态线性化的无模型自适应控制
【MFAC】基于偏格式动态线性化的无模型自适应控制
|
6月前
|
Perl
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
【MFAC】基于全格式动态线性化的无模型自适应控制(Matlab代码)
|
1月前
|
机器学习/深度学习 算法 数据挖掘
稀疏促进动态模态分解(SPDMD)详细介绍以及应用
稀疏促进动态模态分解(SPDMD)结合了动态模态分解(DMD)的数学优雅性和稀疏优化技术,有效提取高维数据中的关键特征。SPDMD通过稀疏约束自动筛选出最重要模态,去除冗余信息,提升模型的可解释性和计算效率。该方法在流体动力学、图像处理、时间序列分析及金融数据等领域广泛应用,能够识别主要趋势、周期性模式及异常现象。SPDMD不仅提高了数据分析效率,还为各领域研究提供了强有力的工具。通过自动选择最相关的模态,SPDMD尤其适用于大规模数据集和实时应用。
57 4
|
6月前
|
机器学习/深度学习 数据可视化
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
|
6月前
|
机器学习/深度学习
大模型开发: 解释批量归一化以及它在训练深度网络中的好处。
批量归一化(BN)是2015年提出的加速深度学习训练的技术,旨在解决内部协变量偏移、梯度消失/爆炸等问题。BN通过在每层神经网络的小批量数据上计算均值和方差,进行标准化处理,并添加可学习的γ和β参数,保持网络表达能力。这样能加速训练,降低超参数敏感性,对抗过拟合,简化初始化。BN通过稳定中间层输入分布,提升了模型训练效率和性能。
170 3
|
6月前
|
数据可视化 测试技术
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
|
6月前
|
算法
【MFAC】基于紧格式动态线性化的无模型自适应迭代学习控制
【MFAC】基于紧格式动态线性化的无模型自适应迭代学习控制
【MFAC】基于紧格式动态线性化的无模型自适应迭代学习控制
|
6月前
|
算法
【MFAC】基于紧格式动态线性化的无模型自适应控制
【MFAC】基于紧格式动态线性化的无模型自适应控制
|
6月前
【MFAC】基于紧格式动态线性化的无模型自适应控制(Matlab代码)
【MFAC】基于紧格式动态线性化的无模型自适应控制(Matlab代码)
下一篇
无影云桌面