【DR_CAN-MPC学习笔记】3&4.详细的MPC建模例子和matlab代码

简介: 【DR_CAN-MPC学习笔记】3&4.详细的MPC建模例子和matlab代码


参照二次规划一般形式,详细推导了MPC的数学模型,即最小化代价函数的表达式,最终推导结果为:

DR_CAN的视频:

【MPC模型预测控制器】3_一个详细的建模例子

【MPC模型预测控制器】3

【MPC模型预测控制器】4_完整案例讲解 - Octave代码

【MPC模型预测控制器】4


离散系统状态空间一般形式:

其中 为状态向量(n×1), 为输入向量(p×1), 为系统状态矩阵(n×n), 为系统输入矩阵(n×p)。

单输入二阶系统的例子:

上式中,,n = 2,p = 1

系统状态向量和输入向量的关系:

  • 表示在k时刻预测 k+1 时刻的系统状态。
  • 由于 决定,因此不需要 ,所以 少一个维度。
  • 因为初始值 均为 n×1 向量,因此 为 (N+1)n×1 向量。同理可推出 为 Np×1 向量。

  • 为 (N+1)n×n 矩阵。
  • 矩阵上面所有的 0 与初始状态 有关(n×1矩阵), 均为 n×p 矩阵,因此 为 (N+1)n×Np 矩阵。

具体可参考上一篇博客的推导(【DR_CAN-MPC学习笔记】2.最优化数学建模推导):

分析过程:

回到单输入二阶系统的例子,,n = 2,p = 1,假设预测区间 N=3 ,

整理一下维度:

= +
(N+1)n×1 = (N+1)n×n n×1 + (N+1)n×Np Np×1
8×1 = 8×2 2×1 + 8×3 3×1

对于系统输出方程: ,参考值 ,误差 ,代价函数为:

代价函数 = 误差加权和 + 输入加权和 + 终端误差,其中 为权重系数矩阵且均为对角矩阵。

经过简化后消去变量 (简化过程参考【DR_CAN-MPC学习笔记】2.最优化数学建模推导):

由上式可见, 只包含了初始状态项 和输入项 ,对 进行最优化可以得到输入项

矩阵 有关:

其中 是原来两个权重矩阵 的增广形式:

矩阵计算较为复杂,可用编程求解。

例子代码:

控制目标:设计合适的 使得 随着 的增加,趋近于0。引入误差

为目标值,控制目标为令误差接近0。

状态矩阵(n×k):

...

输入矩阵(p×k):

...

状态方程:

例如:k=1 时, 表示第2列

回到单输入二阶系统的例子:

  为系统状态变量权重矩阵, 为系统输入变量权重矩阵, 为终端权重矩阵。

DR_CAN给出了Octave代码,在Matlab中也可以运行。下面的代码是我在此基础上修改后的单输入例子的代码,后面也有介绍如何修改为多输入系统。

传送门:(二输入系统)【MPC模型预测控制器】4_Octave代码

代码一共由三个部分组成,分别为主程序:MPC_Test.m,以及两个函数:MPC_Matrices.m和Prediction.m

MPC_Test.m

设置初始参数:

...

%% 清屏
clear; 
close all; 
clc;
%% 加载 optim package,若使用matlab,则注释掉此行
pkg load optim;
%% 第一步,定义状态空间矩阵
%% 定义状态矩阵 A, n x n 矩阵
A = [1 0.1; 0 2];
n= size (A,1); % 计算矩阵第一个维度的长度
%% 定义输入矩阵 B, n x p 矩阵
B = [0; 0.5];
p = size(B,2); % 计算矩阵第二个维度的长度
%% 定义Q矩阵,n x n 矩阵
Q=[1 0; 0 1];
%% 定义F矩阵,n x n 矩阵
F=[1 0; 0 1];
%% 定义R矩阵,p x p 矩阵
R=[0.1];
%% 定义step数量k
k_steps=100; 
%% 定义矩阵 X_K, n x k 矩 阵
X_K=zeros(n,k_steps);
%% 初始状态变量值, n x 1 向量
X_K(:,1)=[20;-20]; % 初始状态不为0,控制目标为0
%% 定义输入矩阵 U_K, p x k 矩阵
U_K=zeros(p,k_steps);
%% 定义预测区间K
N=5;
%% Call MPC_Matrices 函数 求得 E,H矩阵 
[E,H]=MPC_Matrices(A,B,Q,R,F,N);
%% 计算每一步的状态变量的值
for k = 1 : k_steps 
%% 求得U_K(:,k)
U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);
%% 计算第k+1步时状态变量的值
X_K(:,k+1)=(A*X_K(:,k)+B*U_K(:,k));
end
%% 绘制状态变量和输入的变化
subplot(2, 1, 1);
hold;
for i =1 :size (X_K,1)
plot(X_K(i,:));
end
legend("x1","x2")
hold off;
subplot(2, 1, 2);
hold;
for i =1 : size(U_K,1)
plot(U_K(i,:));
end
legend("u1") 
%% 作者:DR_CAN https://www.bilibili.com/read/cv16891782 出处:bilibili

分析:

注释掉以下行,即输入设为0,可单独运行:

N=5;
[E,H]=MPC_Matrices(A,B,Q,R,F,N);
U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);

得到:

由上图可见, 均趋于无穷,因为初始状态不为0且输入为0.

接下来设置合适的输入使得状态值趋于0.

代价函数:

与初始状态有关,不影响代价函数,因此控制目标为最小化 .

预测了N项,但结果只取第一项 .

矩阵 在之前已经分析过了:

矩阵的计算用 MPC_Matrices 函数解决,即代码:

[E,H]=MPC_Matrices(A,B,Q,R,F,N);

功能:输入矩阵 A,B,Q,R,F 和预测区间 N ,输出矩阵 E,H。具体过程参考下面的 MPC_Matrices.m 文件。接下来进行预测:

U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);

MPC_Matrices.m

function  [E , H]=MPC_Matrices(A,B,Q,R,F,N)
n=size(A,1);   % A 是 n x n 矩阵, 得到 n
p=size(B,2);   % B 是 n x p 矩阵, 得到 p
M=[eye(n);zeros(N*n,n)]; % 初始化 M 矩阵. M 矩阵是 (N+1)n x n的, 
                         % 它上面是 n x n 个 "I", 这一步先把下半部
                         % 分写成 0 
C=zeros((N+1)*n,N*p); % 初始化 C 矩阵, 这一步令它有 (N+1)n x NP 个 0
% 定义M 和 C 
tmp=eye(n);  %定义一个n x n 的 I 矩阵
% 更新M和C
for i=1:N % 循环,i 从 1到 N
    rows =i*n+(1:n); %定义当前行数,从i x n开始,共n行 
    C(rows,:)=[tmp*B,C(rows-n, 1:end-p)]; %将c矩阵填满
    tmp= A*tmp; %每一次将tmp左乘一次A
    M(rows,:)=tmp; %将M矩阵写满
end 
% 定义Q_bar和R_bar
Q_bar = kron(eye(N),Q);
Q_bar = blkdiag(Q_bar,F);
R_bar = kron(eye(N),R); 
% 计算G, E, H
G=M'*Q_bar*M; % G: n x n
E=C'*Q_bar*M; % E: NP x n
H=C'*Q_bar*C+R_bar; % NP x NP 
end 
%%作者:DR_CAN https://www.bilibili.com/read/cv16891782 出处:bilibili

Prediction.m

function u_k= Prediction(x_k,E,H,N,p)
U_k = zeros(N*p,1); % NP x 1
U_k = quadprog(H,E*x_k); % 求出代价函数最小时U_k的数值
u_k = U_k(1:p,1); % 取第一个结果
end 
%%作者:DR_CAN https://www.bilibili.com/read/cv16891782 出处:bilibili

分析:

quadprog:matlab自带的最优化函数

运行结果:

由上图所示,状态值 趋于0.

以上为单输入系统的例子。

二输入例子:

代码修改一下,也可以用于多输入,比如:

修改矩阵 A,B,R,Q,F,R ,使得 变化得更快(通过对矩阵Q的设置),且降低能耗减小 初始值(系统的输入一般是耗能的部分,通过对矩阵R的设置)

修改后的 MPC_Test.m:(其余不变)

%% 清屏
clear; 
close all; 
clc;
%% 加载 optim package,若使用matlab,则注释掉此行
% pkg load optim;
%% 第一步,定义状态空间矩阵
%% 定义状态矩阵 A, n x n 矩阵
% A = [1 0.1; 0 2];
A = [1 0.1; -1 2];
n= size (A,1); % 计算矩阵维度
%% 定义输入矩阵 B, n x p 矩阵
% B = [0; 0.5];
B=[0.2 1; 0.5 2];
p = size(B,2);
%% 定义Q矩阵,n x n 矩阵
% Q=[1 0; 0 1];
Q=[100 0; 0 1]; % 更加看重x_1的变化
%% 定义F矩阵,n x n 矩阵
% F=[1 0; 0 1];
F=[100 0; 0 1];
%% 定义R矩阵,p x p 矩阵
% R=[0.1];
R=[1 0; 0 0.1]; % 减小能耗,减小输入u_1
%% 定义step数量k
k_steps=100; 
%% 定义矩阵 X_K, n x k 矩 阵
X_K = zeros(n,k_steps);
%% 初始状态变量值, n x 1 向量
X_K(:,1) =[20;-20];
%% 定义输入矩阵 U_K, p x k 矩阵
U_K=zeros(p,k_steps);
%% 定义预测区间K
N=5;
%% Call MPC_Matrices 函数 求得 E,H矩阵 
[E,H]=MPC_Matrices(A,B,Q,R,F,N);
%% 计算每一步的状态变量的值
for k = 1 : k_steps 
%% 求得U_K(:,k)
U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);
%% 计算第k+1步时状态变量的值
X_K(:,k+1)=(A*X_K(:,k)+B*U_K(:,k));
end
%% 绘制状态变量和输入的变化
subplot(2, 1, 1);
hold;
for i =1 :size (X_K,1)
plot(X_K(i,:));
end
legend("x1","x2")
hold off;
subplot(2, 1, 2);
hold;
for i =1 : size (U_K,1)
plot(U_K(i,:));
end
legend("u1","u2") 
%% 作者:DR_CAN https://www.bilibili.com/read/cv16891782 出处:bilibili

由上图所示, 迅速趋近于0. 相比于 R=[0.1 0; 0 0.1] 时,R=[1 0; 0 0.1] 时的输入 减小,但 趋近于0的速度变缓。由此也可以看出MPC的最优化的决策结果不是绝对的。

相关文章
|
2天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
3月前
|
算法
基于matlab的风力发电系统建模与详细性能仿真分析
本研究介绍风力发电原理与系统模型,使用MATLAB 2022a进行性能仿真。风力通过风轮转化为电能,涉及贝努利定理及叶素理论。仿真展示了风速与输出功率间的关系,包括风电利用系数、切入切出控制与MPPT控制效果。当风速超过25m/s时,系统自动停机保护设备。MPPT算法确保了在变化风速下获得最大功率。
车辆行驶控制运动学模型的matlab建模与仿真,仿真输出车辆动态行驶过程
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。
|
6月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度