K8s技术全景:架构、应用与优化

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: K8s技术全景:架构、应用与优化

本文深入探讨了Kubernetes(K8s)的关键方面,包括其架构、容器编排、网络与存储管理、安全与合规、高可用性、灾难恢复以及监控与日志系统。

一、介绍

Kubernetes的历史和演进

Kubernetes(简称K8s)是一个开源的容器编排系统,用于自动化应用程序的部署、扩展和管理。它最初是由Google内部的Borg系统启发并设计的,于2014年作为开源项目首次亮相。

初始阶段

Kubernetes的诞生源于Google内部对大规模容器管理的需求。早在2014年之前,Google已经在其内部系统Borg上积累了大量关于容器编排和管理的经验。这些经验和技术最终孕育出Kubernetes。

发展阶段

随着云计算和微服务架构的兴起,Kubernetes迅速成为行业标准。它的设计哲学、可扩展性和社区支持是其成功的关键因素。2015年,Cloud Native Computing Foundation(CNCF)成立,并接管了Kubernetes的发展。在CNCF的支持下,Kubernetes经历了快速发展,吸引了一大批贡献者和用户。

演进阶段

Kubernetes不断演进,增加了对多种云平台的支持,改进了网络和存储功能,增强了安全性。其社区也不断扩大,衍生出众多相关项目和工具,形成了一个庞大的生态系统。

K8s的核心概念和设计理念

核心概念

  1. Pods:Pod是Kubernetes的基本运行单位,代表了在集群中运行的一个或多个容器的组合。
  2. Services:Service是对一组提供相同功能的Pods的抽象,它提供了一个稳定的网络接口。
  3. Deployments:Deployment提供了对Pods和ReplicaSets(副本集)的声明式更新能力。

设计理念

  1. 声明式配置:Kubernetes使用声明式配置(而非命令式),用户定义期望状态,系统负责实现这一状态。
  2. 自我修复:系统能够自动替换、重启、复制和扩展集群中的节点。
  3. 可扩展性:Kubernetes设计了一套强大的APIs,允许在其上构建更复杂的系统。
  4. 负载均衡和服务发现:Kubernetes能够自动分配IP地址和DNS名,以及平衡网络流量,以实现高效的服务发现和负载均衡。
  5. 多维度资源调度:它支持基于CPU、内存等多种资源类型的调度决策。

Kubernetes的这些概念和设计理念共同构成了其强大的容器编排和管理能力,使其成为当今云原生应用和微服务架构的首选平台。

二、K8s架构深入解析

架构、应用与优化 Kubernetes的架构设计旨在提供一个分布式、可扩展且高度可用的容器编排平台。它由多个组件构成,协同工作以管理集群的生命周期和操作。

主要组件和节点类型

1. 控制平面(Master节点)

控制平面是Kubernetes的大脑,负责整个集群的管理和协调。它包含几个关键组件:

  • API服务器(kube-apiserver):作为集群的前端,处理REST请求,是所有通信的枢纽。
  • 集群数据存储(etcd):一个轻量级、高可用的键值存储,用于保存所有集群数据。
  • 控制器管理器(kube-controller-manager):运行控制器进程,这些控制器包括节点控制器、副本控制器等。
  • 调度器(kube-scheduler):负责决定将新创建的Pod分配给哪个节点。

2. 工作节点(Worker节点)

工作节点是运行应用程序容器的物理服务器或虚拟机。它们包括:

  • Kubelet:确保容器在Pod中运行,并向控制平面汇报节点的状态。
  • Kube-Proxy:负责节点上的网络代理,实现服务发现和负载均衡。
  • 容器运行时:负责运行容器,例如Docker或containerd。

控制平面和数据平面的工作原理

控制平面

控制平面维护着集群的全局状态,如调度决策、响应Pod生命周期事件、控制器的逻辑等。它确保集群始终处于用户定义的期望状态。

数据平面

数据平面包括所有工作节点,负责实际运行用户的应用程序。它通过Kubelet和Kube-Proxy来维护Pod的生命周期和网络规则。

集群状态管理和调度算法

集群状态管理

Kubernetes通过etcd来维护集群状态。所有组件都通过API服务器与etcd交互,获取或更改集群的状态信息。

调度算法

Kubernetes调度器采用多步骤的过程来选择最佳节点:

  1. 过滤:基于资源需求、策略限制、亲和性规则等过滤掉不适合的节点。
  2. 评分:对于剩余节点,基于资源使用率、网络拓扑等因素计算评分。
  3. 选择:选择得分最高的节点来部署Pod。

此过程确保了有效的资源分配和负载平衡,同时满足用户对部署位置的具体要求。

Kubernetes架构的每个组成部分都被精心设计以提高效率、可靠性和可扩展性,确保其能够应对各种规模和复杂度的应用需求。

三、容器编排和管理

容器编排是Kubernetes的核心功能,它负责管理容器的生命周期、维护应用的健康和确保服务的可用性。在这一部分,我们将深入探讨Kubernetes在容器编排和管理方面的机制和组件。

Pod生命周期管理

1. Pod的创建

  • 定义:Pod是Kubernetes中最小的部署单元,通常包含一个或多个容器。
  • 配置:通过YAML或JSON文件定义Pod的规格,包括容器镜像、端口、环境变量等。

2. Pod的状态

  • Pending:Pod已被Kubernetes接受,但有一个或多个容器尚未创建。
  • Running:Pod已被绑定到一个节点,所有容器都已创建,至少有一个正在运行。
  • Succeeded:Pod中的所有容器都正常运行并已退出,不会重启。
  • Failed:Pod中的所有容器都已终止,且至少有一个因故障终止。
  • Unknown:Pod的状态无法确定。

3. Pod的生命周期钩子

  • PostStart:在容器创建后立即执行的操作。
  • PreStop:在容器终止之前执行的操作。

控制器模式

1. Deployment

  • 用途:管理无状态的应用。
  • 功能:确保指定数量的Pod副本始终运行,支持滚动更新和回滚。

2. StatefulSet

  • 用途:管理有状态的应用。
  • 功能:为每个副本维护一个持久的标识符和存储。

3. DaemonSet

  • 用途:在集群的每个节点上运行一份Pod副本。
  • 功能:用于运行日志收集器、监控代理等集群范围的服务。

4. Job和CronJob

  • 用途:执行一次性或定时任务。
  • 功能:Job用于执行批处理任务,CronJob用于定时任务。

服务发现和负载均衡

1. Service

  • 定义:一种抽象,定义了访问一组Pod的方式。
  • 类型
  • ClusterIP:在集群内部提供一个内部IP。
  • NodePort:在每个节点的指定端口上提供访问。
  • LoadBalancer:使用外部负载均衡器提供访问。
  • ExternalName:通过DNS名映射到外部服务。

2. Ingress

  • 定义:管理外部访问集群服务的规则。
  • 功能:提供URL路由、负载均衡、SSL终端和名称基础的虚拟主机。

容器编排和管理是Kubernetes的核心强项,它通过一系列精密设计的机制和组件,确保容器化应用的高效、可靠运行。这些功能的深度和灵活性使Kubernetes成为当今企业级容器管理的首选平台。

四、网络和存储

在Kubernetes中,网络和存储的管理对于保证容器化应用的高效运行至关重要。这部分将深入探讨Kubernetes在这两个关键领域的实现机制。

网络模型与策略

1. 网络模型

Kubernetes采用的是扁平化网络模型,要求每个Pod都有一个独一无二的IP地址。这意味着在整个集群内,每个Pod都应该能够直接访问其他Pod,而无需NAT。

  • Pod-to-Pod Communication:Pod之间可以直接通信,无需通过NAT。
  • Pod-to-Service Communication:Service作为Pods的抽象,提供了一个稳定的接口供Pods间通信。

2. 网络策略

Kubernetes允许使用网络策略来控制Pod间的流量。这些策略基于标签和命名空间,允许定义复杂的规则集,以确定Pods间的通信权限。

  • 入口和出口规则:定义哪些类型的流量可以进入或离开Pod。
  • 基于标签的隔离:通过标签来标识Pods和服务,实现细粒度的网络隔离。

持久化存储和Volume管理

1. Volume

Kubernetes中的Volume是一个存储在Pod中的目录,可以是本地的目录,也可以是远程存储或其他高级存储设备。

  • 生命周期:Volume的生命周期与Pod相同,它在Pod启动时创建,在Pod退出时销毁。
  • 类型:支持多种类型的Volume,如emptyDir、hostPath、NFS、PersistentVolume等。

2. PersistentVolume (PV) 和 PersistentVolumeClaim (PVC)

  • PersistentVolume (PV):集群资源,代表一块存储空间。PV是独立于Pod的,可以在Pod间共享。
  • PersistentVolumeClaim (PVC):用户对存储的请求。PVC消费PV资源,PVC与PV之间的关系类似于Pod与Node。

3. 存储类 (StorageClass)

  • 定义:描述不同类型存储的方法。
  • 功能:允许管理员为不同的存储后端提供和配置类别,用户可以基于这些类别创建PVC。

4. StatefulSet的存储管理

StatefulSet是管理有状态应用的控制器,它可以确保每个Pod都能够绑定到特定的PersistentVolume,这对于数据库和其他需要持久化存储的应用至关重要。

Kubernetes在网络和存储方面提供了高度的灵活性和可扩展性,能够适应不同的应用场景和需求。这些特性是Kubernetes支持复杂企业级应用的关键因素之一。

五、安全和合规

在Kubernetes环境中,确保集群安全和遵守合规标准是至关重要的。这一部分详细探讨Kubernetes中的安全机制,包括认证、授权、访问控制以及最佳安全实践。

认证、授权与访问控制

1. 认证 (Authentication)

  • 机制:Kubernetes支持多种认证机制,如X.509证书、Bearer Tokens、OpenID Connect Tokens等。
  • Kubeconfig:用于存储API服务器的访问凭证和连接信息。
  • Service Accounts:专门为Pod中运行的应用程序创建的账户,由Kubernetes自动管理。

2. 授权 (Authorization)

  • RBAC (Role-Based Access Control):基于角色的访问控制,通过角色和角色绑定来控制用户对Kubernetes资源的访问。
  • ABAC (Attribute-Based Access Control):基于属性的访问控制,定义复杂的访问规则。
  • Node Authorization:专门控制节点(kubelet)对API的访问。

3. 准入控制 (Admission Control)

  • 定义:用于拦截(在认证和授权之后)对API的请求。
  • 常用控制器:包括PodSecurityPolicies、ResourceQuotas、NamespaceLifecycle等。

安全最佳实践与策略

1. 集群安全

  • API服务器安全配置:使用HTTPS、开启RBAC、限制访问来源等。
  • 节点安全:保证kubelet的安全,限制对kubelet API的访问。
  • 网络策略:使用网络策略隔离Pod和服务,防止未授权的跨服务访问。

2. Pod安全

  • Pod安全策略:定义一组条件,Pod需要满足这些条件才能运行。
  • 安全上下文:为Pod和容器配置权限和访问控制设置。
  • 最小权限原则:只授予Pod运行所必需的权限。

3. 密钥和敏感数据管理

  • Secrets:用于存储和管理敏感信息,如密码、OAuth令牌和SSH密钥。
  • 加密-at-Rest:确保持久化存储的数据被加密。

4. 审计日志

  • 审计:跟踪和记录集群中的活动,对安全事件进行分析。
  • 策略:定义审核日志策略,决定记录哪些事件以及如何保留日志。

通过这些机制和最佳实践,Kubernetes提供了强大的工具来保护集群和应用程序免受未授权访问和攻击,同时确保了合规性和数据保密性。

六、高可用和灾难恢复

在Kubernetes集群管理中,实现高可用性和灾难恢复策略是至关重要的。这些机制确保在硬件故障、软件错误、网络问题等不可预测情况下,集群和应用能够持续运行或快速恢复。

集群的高可用配置

1. 控制平面的高可用

  • 多节点控制平面:部署多个控制平面节点,以避免单点故障。
  • 负载均衡器:在控制平面节点前设置负载均衡器,以分散请求。
  • etcd集群:运行多个etcd实例,形成一个高可用的键值存储集群。

2. 工作节点的高可用

  • 自动扩展和自愈:使用集群自动扩展器和自动修复策略确保足够的工作节点数量和健康状态。
  • 跨区域部署:在不同的地理位置或云区域部署节点,以抵御区域性故障。

备份与恢复策略

1. 数据备份

  • etcd备份:定期备份etcd数据,这对于恢复集群状态至关重要。
  • 持久卷备份:对PersistentVolumes进行定期备份,以保证数据安全。

2. 集群资源备份

  • Kubernetes资源备份:使用工具如Velero备份Kubernetes资源和配置,包括Deployments、Services等。

3. 灾难恢复

  • 恢复计划:制定详细的灾难恢复计划,包括如何快速恢复集群和应用。
  • 演练:定期进行灾难恢复演练,以验证和改进恢复流程。

4. 容灾策略

  • 多集群部署:部署多个Kubernetes集群,作为彼此的备份,以保证至少有一个集群始终可用。
  • 数据复制:跨集群复制关键数据和配置,以确保在主集群不可用时能够快速切换。

通过这些高可用和灾难恢复策略,Kubernetes能够最大限度地减少系统停机时间,保证业务连续性和数据完整性。这些策略对于运行关键业务应用的企业来说尤为重要。

七、监控和日志

监控和日志管理是Kubernetes集群管理中不可或缺的一部分,它们帮助管理员了解集群的健康状况,诊断问题,并确保集群的高效运行。这部分将深入探讨Kubernetes中的监控和日志系统。

集群监控工具和技巧

1. 资源和性能监控

  • Prometheus:一个开源的监控和告警工具,广泛用于Kubernetes的资源和性能监控。
  • Grafana:与Prometheus集成,提供了丰富的数据可视化选项。
  • Heapster:(已废弃)曾经是Kubernetes的默认监控工具,现已被Metrics Server所替代。
  • Metrics Server:用于收集集群中节点和Pod的资源使用数据。

2. 监控策略

  • 基于阈值的告警:设置资源使用率等的阈值,当达到阈值时发送告警。
  • 自定义监控和告警规则:利用Prometheus的强大查询语言和告警规则来定制监控策略。

日志管理和分析

1. 日志收集

  • Elasticsearch、Fluentd和Kibana(EFK堆栈):一套流行的日志收集、存储和分析解决方案。
  • Loki:一个更轻量级的日志聚合系统,专为Kubernetes设计,与Grafana紧密集成。

2. 日志策略

  • 集中式日志收集:将所有节点和Pod的日志汇总到一个中心位置,便于分析和存储。
  • 日志轮转和保留:自动删除旧日志,以管理存储空间和满足合规要求。

3. 日志分析

  • 实时日志分析:提供实时的日志数据流,帮助快速定位问题。
  • 日志查询和可视化:使用Kibana或Grafana对日志数据进行查询和可视化展示。

4. 审计日志

  • Kubernetes审计:记录对Kubernetes API的请求,包括谁、什么时候、什么操作以及操作是否成功等信息。

通过这些监控和日志管理工具,Kubernetes管理员能够有效地监控集群状态,识别和解决问题,从而保证集群的稳定性和效率。这些系统对于维护大规模、复杂的Kubernetes集群至关重要。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
30天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
28天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
22天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
142 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
22天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
665 243
|
15天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
53 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
26天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
55 4
【AI系统】计算图优化架构
|
16天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
52 3
|
24天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
59 13
|
23天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
28天前
|
运维 Cloud Native 持续交付
云原生技术深度探索:重塑现代IT架构的无形之力####
本文深入剖析了云原生技术的核心概念、关键技术组件及其对现代IT架构变革的深远影响。通过实例解析,揭示云原生如何促进企业实现敏捷开发、弹性伸缩与成本优化,为数字化转型提供强有力的技术支撑。不同于传统综述,本摘要直接聚焦于云原生技术的价值本质,旨在为读者构建一个宏观且具体的技术蓝图。 ####

热门文章

最新文章