【Linux系统编程】进程状态

简介: 【Linux系统编程】进程状态

介绍


       进程的状态指的是进程在执行过程中所处的状态。进程的状态随着进程的执行和外界条件的变化而转换。我们可用 kill 命令来进程控制进程的状态。


       kill中的 kill -l 指令用于查看系统中定义的所有信号及其对应的编号。这些信号可以用于 kill 命令来向进程发送特定的信号控制其状态。例如,kill - 9 命令会向进程发送 SIGKILL 信号,强制终止进程,kill -19 命令会向进程发送 SIGSTOP 信号,使进程进入暂停状态,如同 Ctrl+Z 组合键的效果,kill -18 命令用于向进程发送 SIGCONT 信号,使进程从暂停状态恢复执行,如同 Ctrl+C 组合键的效果。


系统下的进程主流状态


       进程在系统中主流的四个主要状态:运行状态、排队状态、阻塞状态、挂起状态。


运行状态


       首先,要说明,系统内部的所有进程不是一次性执行完毕的,而是在内部排队等待某种资源。


       进程只要在运行队列里或正在被CUP正在执行时,此进程就处于运行状态。部分教材中可能会说明有创建状态、就绪状态、阻塞状态等,这几种状态其实都是跟进程放入运行队列有关。


排队状态


       由于大部分计算机中只有一个CUP,而一个CUP一次只能运行一个进程队列,所以在Linux系统内核中,所有进入状态的进程必须依次“ 排队 ”等待,这里的“ 排队 ”并不是进程自己在“ 排队 ”等待,而是进程的 tast_struct 结构体在进行“ 排队”等待被CUP执行。


       其实不光是等待CPU执行时需要排队,在进程等待某种资源时,也会处于排队状态。如外设等。这里的排队等待,不像一般数据结构中的排队等待,而是将 task_struct 结构体嵌入到运行队列中,系统通过地址偏移量来进行访问里面的属性数据。具体实现如下:


3fc75cf5b2114e7bad0a493eb8b8f8ea.png


       总的来说,进程的排队状态是指进程在等待被执行或等待获取资源时所处的一种状态。在排队状态下,进程会被放入相应的队列中,等待其前面的进程释放资源或完成其任务,当多个进程同时请求系统资源时,操作系统会根据一定的调度算法将这些进程按照一定的顺序排列,以便按照一定的优先级逐个分配资源。


阻塞状态


       阻塞状态是进程的执行过程中一种暂停状态,此时进程放弃处理机而处于暂停状态。当进程处于阻塞状态时会排成一个队列,形成这种情况通常是因为进程在等待某个事件的发生。如,当我们的进程在进行等待软硬件资源的时候,资源如果没有就绪,我们的进程task_struct 只能将自己设置为阻塞状态,并将自己的pcb连入等待的资源提供的等待队列。


挂起状态


       进程的挂起状态是指一个进程由于某些原因暂时不能执行,而被系统挂起来,等待以后执行。在这种状态下,进程不会占用内存空间,也不会被调度执行,进程只是被存储在磁盘上。这种状态通常发生在系统资源不足或者进程等待某些事件时发生。当条件允许时,被挂起的进程就会被操作系统再次调回内存,重新进入等待被执行的状态,即就绪态。


前台进程与后台进程  


       前台进程和后台进程是操作系统中的两种进程类型,它们在运行状态和行为上存在显著差异。一般情况下,进程中的可执行程序直接运行是前台进程,当在执行可执行程序时,在后面加上“ & ”符号,就变成了后台进程。前台进程和后台进程在进程状态符观察出。当查看进程状态时,若状态符后面有“ + ”号,此进程表示前台进程,若状态符后面没有“ + ”号,此进程表示后台进程。    


       通常情况下,前台进程可以直接使用键盘上的 Ctrl+C 来终止,但后台进程则需要使用特定的命令,如“ kill -9 [PID] ”来终止。因此,当我们设为后台进程时,用户必须要获取该进程的PID。


Linux内核源代码的进程状态


       在了解进程状态时,首先要明白系统内部定义的进程状态。在Linux内核中定义状态的源代码如下:


/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char* const task_state_array[] = {  //下面的大写首字母代表状态
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};


       R运行状态:表示进程正在处于系统的运行状态,与上面的运行状态效果一样,并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。


       S睡眠状态:进程在等待某件事件完成而进入睡眠。这种睡眠状态如同阻塞状态,有时候也叫做可中断睡眠,可直接用键盘进行中断。


       D磁盘休眠状态:这种状态有时候也叫不可中断睡眠状态,它用于资源管理。当进程的PCB指针放入磁盘结构体的队列中时,如果内存紧张,操作系统可能需要终止一些后台进程来缓解内存压力。但是,如果正在写入磁盘的数据很重要,直接终止可能会导致不良后果。此时将进程置于D状态可以确保即使在内存紧张的情况下,操作系统也不会终止它,直到IO操作完成。


       T停止状态:表示进程被暂定,如同 kill -19 命令停止运行进程。此状态也可理解为阻塞状态的分支。


       t停止状态:表示进程处于跟踪状态而暂定,通常用于调试目的。


注意:状态T和状态t都是表示进程被停止,其中,状态T停止是常规控制停止,而状态t停止是因为深入跟踪导致进程停止,通常用于调试。


       X死亡状态:此状态表示进程已经结束,并且可以被回收的状态。当一个进程完全结束执行,并且系统已经回收了其资源时,该进程就会进入X状态,因此,这个状态只是一个返回状态,我们不会在任务列表里看到这个状态。


       Z僵尸状态:表示一个进程已经结束执行,但其父进程还没有读取它的退出状态信息。在这种情况下,该进程会以终止状态保持在进程表中,等待父进程读取其退出状态代码。


       当一个进程退出时,它会将退出信息保存在task_struct中,供父进程或操作系统读取。如果父进程在子进程退出后仍然存在,但没有读取子进程的退出状态信息,子进程就会进入Z状态。处于Z状态的进程不会占用CPU资源,但会占用进程表中的一个槽位和内存,直到其父进程读取了其退出状态信息并对其进行回收,因此,僵尸进程可能会造成内存资源的浪费,有一定的危害。以下代码的子进程就为僵尸进程。


#include <iostream>
#include <unistd.h>
using namespace std;
int main()
{
    pid_t id = fork();
    if (id == 0)  //子进程
    {
        int n = 5;
        while (n)
        {
            cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
            sleep(1);
            n--;
        }
        exit(0);  //子进程退出
    }
    while (1)  //父进程运行
    {
        cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
        sleep(1);
    }
    return 0;
}

孤儿进程


       孤儿进程是指一个进程的父进程已经终止,而该进程还在运行。


       由于孤儿进程原有的父进程已不存在,所以,孤儿进程通常由init进程(进程号为1)收养,并由init进程对它们完成状态收集工作。因此,孤儿进程并不会有什么危害。以下是孤儿进程的代码


#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
    pid_t id = fork();
    if (id < 0) 
    {
        perror("fork");
        return 1;
    }
    else if (id == 0)   //子进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
    }
    else  //父进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
        exit(0);
    }
    return 0;
}
相关文章
|
5天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
6天前
|
Ubuntu Linux Shell
Linux系统中如何查看磁盘情况
【9月更文挑战第3天】在Linux系统中,有多种方式查看磁盘情况。可通过命令行工具`df`查看文件系统磁盘使用情况,选项`-h`以人类可读格式显示,`-T`显示文件系统类型;`du`命令显示目录或文件磁盘使用情况,`-h`以人类可读格式显示,`-s`仅显示总计;`fdisk -l`列出磁盘和分区信息。此外,图形界面的磁盘管理工具和文件管理器也可用于查看磁盘使用情况。这些方法有助于更好地管理磁盘空间。
|
6天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
2天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
4天前
|
安全 开发者 Python
揭秘Python IPC:进程间的秘密对话,让你的系统编程更上一层楼
【9月更文挑战第8天】在系统编程中,进程间通信(IPC)是实现多进程协作的关键技术。IPC机制如管道、队列、共享内存和套接字,使进程能在独立内存空间中共享信息,提升系统并发性和灵活性。Python提供了丰富的IPC工具,如`multiprocessing.Pipe()`和`multiprocessing.Queue()`,简化了进程间通信的实现。本文将从理论到实践,详细介绍各种IPC机制的特点和应用场景,帮助开发者构建高效、可靠的多进程应用。掌握Python IPC,让系统编程更加得心应手。
11 4
|
2天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
8天前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
8天前
|
Linux C语言
C语言 多进程编程(四)定时器信号和子进程退出信号
本文详细介绍了Linux系统中的定时器信号及其相关函数。首先,文章解释了`SIGALRM`信号的作用及应用场景,包括计时器、超时重试和定时任务等。接着介绍了`alarm()`函数,展示了如何设置定时器以及其局限性。随后探讨了`setitimer()`函数,比较了它与`alarm()`的不同之处,包括定时器类型、精度和支持的定时器数量等方面。最后,文章讲解了子进程退出时如何利用`SIGCHLD`信号,提供了示例代码展示如何处理子进程退出信号,避免僵尸进程问题。
|
3天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
7天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。