【Python数据结构与算法】--- 递归算法的应用 ---[乌龟走迷宫] |人工智能|探索扫地机器人工作原理

简介: 【Python数据结构与算法】--- 递归算法的应用 ---[乌龟走迷宫] |人工智能|探索扫地机器人工作原理




导言

乌龟探索迷宫这个问题与机器人领域也有关系,

如果我们有一个Roomba扫地机器人,我们或许可以利用乌龟探索迷宫这个问题的解决方法对扫地机器人进行重新编程.

解决过程

首先,要建立数据结构

1.建立数据结构

我们将整个迷宫的空间(矩形)分为行列整齐的方格,区分出墙壁和通道给每个方格具有行列位置,并赋予“墙壁”,"通道”的属性

考虑用矩阵方式来实现迷宫数据结构采用“数据项为字符列表列表”这种两级列表的方式保存方格内容

采用不同字符来分别代表“通道为空格  " ,“墙壁我为+”,“海龟投放点S"从一个文本文件逐行读入迷宫数据

2.探索迷宫:

算法思路

龟龟探索迷宫的递归算法思路如下

将海龟从原位置向北移动一步,以新位置递归调用探索迷宫寻找出口;

如果上面的步骤找不到出口,那么将海龟从原位置向南移动一步,以新位置递归调用探索迷宫:

如果向南还找不到出口,那么将海龟从原位置向西移动一步,以新位置递归调用探索迷宫;

如果向西还找不到出口,那么将海龟从原位置向东移动一步,以新位置递归调用探索迷宫;

如果上面四个方向都找不到出口,那么这个迷宫没有出口!


递归调用的“基本结束条件

归纳如下 :

海龟碰到“墙壁”方格,递归调用结束,返回失败.

海龟碰到“面包屑”方格,表示此方格已访问过递归调用结束,返回失败.

海龟碰到“出口”方格,即“位于边缘的通道”方格,递归调用结束,返回成功!

海龟在四个方向上探索都失败,递归调用结束返回失败


3.乌龟走迷宫的实现代码:

import turtle
#迷宫搜索程序全局常量
START = "S" #--->起始位置
OBSTACLE = "+"  #--->墙
TRIED = "." # 走过的路
DEAD_END = "-" # 死路
PART_OF_PATH = "0" # 走出迷宫的出口
#Maze类构造方法
class Maze:
    def __init__(self,maze_filename):
        with open(maze_filename,"r") as maze_file:
            self.maze_list = [
                [ch for ch in line.strip("\n")]
                for line in maze_file.readlines()
            ]
        self.rows_in_maze = len(self.maze_list)
        self.columns_in_maze = len(self.maze_list[0])
        for row_idx, row in enumerate(self.maze_list):
            if START in row:
                self.start_row = row_idx
                self.start_col = row.index(START)
                break
        self.x_translate = -self.columns_in_maze / 2
        self.y_translate = self.rows_in_maze / 2
        self.t = turtle.Turtle()
        self.t.shape("turtle")
        self.wn = turtle.Screen()
        self.wn.setworldcoordinates(
            -(self.columns_in_maze - 1) / 2 - 0.5,
            -(self.rows_in_maze - 1) / 2 - 0.5,
            (self.columns_in_maze - 1) / 2 + 0.5,
            (self.rows_in_maze - 1) / 2 + 0.5,
        )
    #Maze 类绘制方法
    def draw_maze(self):
        self.t.speed(10)
        self.wn.tracer(0)
        for y in range (self.rows_in_maze):
            for x in range (self.columns_in_maze):
                if self.maze_list[y][x] == OBSTACLE:
                    self.draw_centered_box(
                        x + self.x_translate,
                        -y + self.y_translate,
                        "orange",
                    )
        self.t.color("black")
        self.t.fillcolor("blue")
        self.wn.update()
        self.wn.tracer(1)
    def draw_centered_box(self, x, y, color):
        self.t.up()
        self.t.goto(x - 0.5, y - 0.5)
        self.t.color(color)
        self.t.fillcolor(color)
        self.t.setheading(90)
        self.t.down()
        self.t.begin_fill()
        for i in range(4):
            self.t.forward(1)
            self.t.right(90)
        self.t.end_fill()
    #Maze 类移动方法
    def update_position(self,row,col,val=None):
        """标记路径并更新迷宫图景"""
        if val:
            self.maze_list[row][col] = val
        self.move_turtle(col, row)
        if val == PART_OF_PATH:
            color = "green"
        elif val == OBSTACLE:
            color = "red"
        elif val == TRIED:#已走
            color = "black"
        elif val == DEAD_END:
            color = "red"
        else:
            color = None
        if color:
            self.drop_bread_crumb(color)#留下标记物
    def move_turtle(self, x, y):
        self.t.up()
        self.t.setheading(
            self.t.towards(
                x + self.x_translate,
                -y + self.y_translate,
            )
        )
        self.t.goto(
            x + self.x_translate, -y + self.y_translate
        )
    def drop_bread_crumb(self,color):
        self.t.dot(10,color)
    def is_exit(self, row, col):
        """如果乌龟处于迷宫边缘,表示到达出口"""
        return (
            row in [0,self.rows_in_maze - 1]
            or col in [0,self.columns_in_maze - 1]
        )
    def __getitem__(self, idx):
        return self.maze_list[idx]
def search_from(maze, row, column):
    """对当前位置的四个方向逐一尝试
        直至找到出口"""
    maze.update_position(row, column)
    #检查基本情况:
    #1. 遇到了障碍
    if maze[row][column] == OBSTACLE:
        return False
    #2. 遇到已经访问过的位置
    if maze[row][column] in [TRIED, DEAD_END]:
        return False
    #3. 找到了出口
    if maze.is_exit(row,column):
        maze.update_position(row, column, PART_OF_PATH)
        return True
    maze.update_position(row, column, TRIED)
    #使用逻辑 or 对各个方向进行
    #逐一尝试
    found = (#利用段路经,逐语句读取  北,南,西,东
        search_from(maze, row - 1, column)
        or search_from(maze, row + 1, column)
        or search_from(maze, row, column-1)
        or search_from(maze, row, column+1)
    )
    if found:
        maze.update_position(row, column , PART_OF_PATH)
    else:
        maze.update_position(row, column , DEAD_END)
    return found
my_maze = Maze('maze2.txt')
my_maze.draw_maze()
my_maze.update_position(my_maze.start_row, my_maze.start_col)
search_from(my_maze, my_maze.start_row, my_maze.start_col)

运行过程:


拓展:

在死胡同里乌龟的是如何走的呢?


📝全文总结:

这篇文章主要讲解的是,如何用递归算法解决乌龟🐢走迷宫问题,这个问题类似于我们的扫地机器人,但是这个算法存在这一写缺点,比如说 时间方面和距离方面.如果我们要利用这个算法来写机器人我们可以从记录的路径信息,对机器人进行重新编程,以便它可以在较少的时间内清理地面,并优化其行进路线。

目录
相关文章
|
3月前
|
机器人 数据安全/隐私保护 Python
企业微信自动回复软件,企业微信自动回复机器人,python框架分享
企业微信机器人包含完整的消息处理流程,支持文本消息自动回复、事件处理、消息加密解密等功能
|
17天前
|
机器学习/深度学习 存储 算法
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
196 0
|
2月前
|
存储 人工智能 机器人
别再只做聊天机器人:AI 应用商业闭环的工程落地指南,免费体验中
本文介绍了如何通过阿里云百炼平台创建一个星座运势分析AI智能体,并集成支付宝MCP服务实现支付闭环。解决AI产品无法直接变现的问题,完成“服务-支付-交易”全流程闭环,帮助开发者快速实现商业化。
|
7月前
|
存储 人工智能 监控
大牛直播SDK在四足机器人和无人机巡检中的创新应用方案
在工业4.0和智能化浪潮下,传统巡检方式正经历深刻变革。四足机器人与无人机凭借灵活机动性和高效巡检能力崭露头角,而大牛直播SDK则赋予其实时直播与智能互动功能。本文介绍大牛直播SDK的核心优势、在四足机器人和无人机巡检中的应用方案,以及技术实现要点和未来展望,展示智能巡检的广阔前景。
185 6
|
4月前
|
机器学习/深度学习 人工智能 机器人
模仿学习在机器人“接触丰富”任务中的应用
本文结合近期发表的一篇综述性论文,简要介绍了机器人技术中的模仿学习(Imitation Learning)、以及接触丰富(Contact-Rich)任务这两个概念
136 41
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
86 1
|
3月前
|
JSON 机器人 API
微信机器人自动回复插件,vx自动回复机器人脚本助手,python框架分享
这个微信机器人系统包含三个主要模块:主程序基于itchat实现微信消息监听和自动回复功能
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
100 0
|
3月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑
|
3月前
|
JSON 机器人 数据安全/隐私保护
微信自动聊天机器人, 微信自动回复机器人,python框架分享
这个微信机器人实现包含主程序、配置文件、工具函数和测试脚本四个模块。主程序使用itchat库

热门文章

最新文章

推荐镜像

更多