设计缓存系统:缓存穿透,缓存击穿,缓存雪崩解决方案分析

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 设计缓存系统:缓存穿透,缓存击穿,缓存雪崩解决方案分析


前言

设计一个缓存系统,不得不要考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。

缓存穿透

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。

在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。

解决方案

有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

缓存雪崩

缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。

解决方案

缓存失效时的雪崩效应对底层系统的冲击非常可怕。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线 程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。

这里分享一个简单方案就是讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

缓存击穿

对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。

缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回射到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

解决方案

1.使用互斥锁(mutex key)

业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。

SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。在redis2.6.1之前版本未实现setnx的过期时间,所以这里给出两种版本代码参考:

//2.6.1前单机版本锁
String get(String key) {
  String value = redis.get(key);
  if (value  == null) {
    if (redis.setnx(key_mutex, "1")) {
      // 3 min timeout to avoid mutex holder crash  
      redis.expire(key_mutex, 3 * 60)  
              value = db.get(key);
      redis.set(key, value);
      redis.delete(key_mutex);
    } else {
      //其他线程休息50毫秒后重试  
      Thread.sleep(50);
      get(key);
    }
  }
}复制代码

新版本代码:

public String get(key) {
  String value = redis.get(key);
  if (value == null) {
    //代表缓存值过期
    //设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
    if (redis.setnx(key_mutex, 1, 3 * 60) == 1) {
      //代表设置成功
      value = db.get(key);
      redis.set(key, value, expire_secs);
      redis.del(key_mutex);
    } else {
      //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
      sleep(50);
      get(key);
      //重试
    }
  } else {
    return value;
  }
}复制代码

memcache代码:

if (memcache.get(key) == null) {
  // 3 min timeout to avoid mutex holder crash  
  if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
    value = db.get(key);
    memcache.set(key, value);
    memcache.delete(key_mutex);
  } else {
    sleep(50);
    retry();
  }
}复制代码

2. "提前"使用互斥锁(mutex key)

在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。

当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。

伪代码如下:

v = memcache.get(key);
if (v == null) {
  if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
    value = db.get(key);
    memcache.set(key, value);
    memcache.delete(key_mutex);
  } else {
    sleep(50);
    retry();
  }
} else {
  if (v.timeout <= now()) {
    if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
      // extend the timeout for other threads  
      v.timeout += 3 * 60 * 1000;
      memcache.set(key, v, KEY_TIMEOUT * 2);
      // load the latest value from db  
      v = db.get(key);
      v.timeout = KEY_TIMEOUT;
      memcache.set(key, value, KEY_TIMEOUT * 2);
      memcache.delete(key_mutex);
    } else {
      sleep(50);
      retry();
    }
  }
}复制代码

3. "永远不过期"

这里的“永远不过期”包含两层意思:

(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。

(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期

从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。

String get(final String key) {
  V v = redis.get(key);
  String value = v.getValue();
  long timeout = v.getTimeout();
  if (v.timeout <= System.currentTimeMillis()) {
    // 异步更新后台异常执行  
    threadPool.execute(new Runnable() {
      public void run() {
        String keyMutex = "mutex:" + key;
        if (redis.setnx(keyMutex, "1")) {
          // 3 min timeout to avoid mutex holder crash  
          redis.expire(keyMutex, 3 * 60);
          String dbValue = db.get(key);
          redis.set(key, dbValue);
          redis.delete(keyMutex);
        }
      }
    }
    );
  }
  return value;
}复制代码

4. 资源保护

采用netflix的hystrix,可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。

四种解决方案:没有最佳只有最合适

总结

针对业务系统,永远都是具体情况具体分析,没有最好,只有最合适

最后,对于缓存系统常见的缓存满了和数据丢失问题,需要根据具体业务分析,通常我们采用LRU策略处理溢出,Redis的RDB和AOF持久化策略来保证一定情况下的数据安全。



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
17天前
|
存储 缓存 监控
Linux缓存管理:如何安全地清理系统缓存
在Linux系统中,内存管理至关重要。本文详细介绍了如何安全地清理系统缓存,特别是通过使用`/proc/sys/vm/drop_caches`接口。内容包括清理缓存的原因、步骤、注意事项和最佳实践,帮助你在必要时优化系统性能。
148 78
|
11天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
缓存 NoSQL 数据库
缓存穿透、缓存击穿和缓存雪崩及其解决方案
在现代应用中,缓存是提升性能的关键技术之一。然而,缓存系统也可能遇到一系列问题,如缓存穿透、缓存击穿和缓存雪崩。这些问题可能导致数据库压力过大,甚至系统崩溃。本文将探讨这些问题及其解决方案。
|
3月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
117 1
|
14天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
157 85
|
3月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
53 2
数据的存储--Redis缓存存储(二)
|
3月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
85 6
|
2月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
2月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
330 22