基于MIMO通信系统的球形译码算法matlab性能仿真,对比PSK检测,SDR检测

简介: 基于MIMO通信系统的球形译码算法matlab性能仿真,对比PSK检测,SDR检测

1.算法运行效果图预览

a431d88a63a1d9f73ed0f3bd3f7b9be4_82780907_202401212339030090180602_Expires=1705852143&Signature=qu7lD7ISNZxc9MuE1xbuU2X9OIc%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
球形译码算法(SD)是一种基于多输入多输出(MIMO)通信系统的检测算法。与相移键控(PSK)和软件定义无线电(SDR)相比,它具有更高的频谱效率和可靠性,下面将详细介绍SD算法。

    球形译码算法是一种最大似然估计方法,它通过最小化误码率(BER)来估计接收信号的相位和幅度。在MIMO系统中,SD算法可以同时处理多个发送和接收天线,从而提高系统容量和可靠性。

   SD算法的核心思想是将接收信号向量视为以原点为球心、以信号强度为半径的球体。在这个球体上,每个接收信号向量都有一个对应的相位和幅度。通过搜索这个球体,找到与每个接收信号向量最近的发送信号向量,从而估计出相位和幅度。

   假设发送信号向量X=[x1,x2,...,xm]T,接收信号向量Y=[y1,y2,...,yn]T,其中T表示转置。则MIMO系统可以表示为:

Y=HX+N

其中,H是m×n的信道矩阵,N是噪声矩阵。

  在SD算法中,我们假设发送信号向量X是均匀分布的复高斯随机向量,并且与噪声矩阵N相互独立。根据这个假设,我们可以计算出每个接收信号向量的似然函数:

L(x∣y)=exp(-(y−Hx)H(y−Hx)/σ2)

   其中,σ2是噪声功率。为了简化计算,我们只考虑噪声矩阵N中的实部和虚部,而忽略它们的相位。这样,我们可以将每个接收信号向量的实部和虚部表示为以原点为球心、以信号强度为半径的半球体。通过搜索这个半球体,我们可以找到与每个接收信号向量最近的发送信号向量,从而估计出相位和幅度。

4.部分核心程序

```for i=1:length(SNR)
Bit_err(i) = 0;
Num_err = 0;
Numbers = 0; %误码率累加器
N0 = 10/(10^(SNR(i)/10));
while Num_err <= Times(i)
Num_err
fprintf('SNR = %f\n', SNR(i));
%产生需要发送的随机数
Trans_data = round(rand(1,2data_Numbers));
%QPSK
QPSK_IQ = [-1 1];
QPSK_input_I = QPSK_IQ(Trans_data(1:2:end)+1);
QPSK_input_Q = QPSK_IQ(Trans_data(2:2:end)+1);
Trans_QPSK =(QPSK_input_I + sqrt(-1)
QPSK_input_Q)/sqrt(2);

       %作为发送信源
       MIMO_Tx(1,:) = Trans_QPSK;
       for send_loop = 2:Tm            
           MIMO_Tx(send_loop,:) = MIMO_Tx(1,:);              
       end
       %信道
       H_Ray  = (randn(Rn,Tm)+sqrt(-1)*randn(Rn,Tm))/sqrt(2);
       %对信道进一步加入随机干扰
       H_Ray  = abs(H_Ray)+randn(Rn,Tm);
       %球形译码 decoder算法
       for k=1:data_Numbers
           R0      = 1;
           dR      = 0.05;
           Nr      = 10;
           Nv      = 10;
           rho     = 0.99;
           jj1     = 0;
           jj2     = 0;
           y       = H_Ray*MIMO_Tx(:,k) + 4*N0*randn(size(H_Ray*MIMO_Tx(:,k)));
           y       = y/max(max(abs(y)));
           smin    = y;

....................................................................
smin = smin/max(abs(smin));
smin2(:,k) = smin;
end
%接收
MIMO_Rx = smin2 + 2.5sqrt(N0)randn(size(smin2))/mod;
MIMO_Rx2 = rand(1,Tm)MIMO_Rx(:,:);
%QPSK解调
................................................................
end
Bit_err(i)=Num_err/(data_Numbers
Numbers);
end

figure;
semilogy(SNR,Bit_err,'o-r');
xlabel('SNR(dB)');
ylabel('BER');
grid on;
save R.mat SNR Bit_err

```

相关文章
|
5天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
30 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
28 20
|
10天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
47 16
|
1月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
40 8
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
56 3
|
30天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章