带你读《弹性计算技术指导及场景应用》——1. 技术改变AI发展:CUDA Graph优化的底层原理分析

本文涉及的产品
无影云电脑企业版,4核8GB 120小时 1个月
资源编排,不限时长
无影云电脑个人版,1个月黄金款+200核时
简介: 带你读《弹性计算技术指导及场景应用》——1. 技术改变AI发展:CUDA Graph优化的底层原理分析

简介:随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。CUDA是一种并行计算平台和编程模型,由Nvidia推出,可利用GPU的强大处理能力进行加速计算。

CUDA 异步执行模型

对于GPU运算集中的AI应用场景,为了提升系统的性能,最大化地利用GPU资源是一个重要的优化方向。比较常用的方式是尽量将GPU运算转换为异步操作,CPU侧负责任务提交,保证有足够的cuda kernel发送到GPUGPU按照CUDA Stream流队列中的Kernel顺序执行。只要这中间不存在同步操作,GPU完全可以不用等待,顺序地将所有的kernel执行完,然后再通知CPUCPU运算和GPU运算是相互独立的协作关系。

 

以上的模型是一个理想化的状态,听起来合乎逻辑,而且很完美。大致的运行效果如图1。可以看到CPU通过CUDA API已经将Kernel提前准备好,GPU的任务一个接一个。GPU的利用率也比较高。

 

image.png

1 GPU异步执行的典型场景

 

对于一般的性能优化,达到这种状态已经很好了。但如果想进一步的优化就需要知道模型的实际运行情况。随着GPU算力的提升,计算任务的执行时间在慢慢缩小,一个GPU执行单元可能在us或者ms级完成。

 

通常情况下一个好的AI运算框架或模型应该尽量让GPU Kernel的运算时间长一些,从而使得GPU的性能能够更好地发挥,因为有个事实是:GPU Kernel提交到硬件也是有开销的,虽然这个时间可能只有0.x us。这里的提交不是指的cudaLaunchKernel而是更底层驱动和硬件之间的真正的提交。

 

如果业务场景中有很多小的usKernel要执行,则整个系统的性能会随着短Kernel的比例增加整体性能输出越来越差,GPU资源并不能充分利用起来。

CUDA Graph 性能优化效果

CUDA Graph可以通过CaptureCreate的方式将多个Kernel组合在一起生成一个Graph,与Kernel融合不同,在Graph内部仍然是多个Kernel的形式存在,但提交操作只需要一次,如果可以将尽量多的Kernel组合在一起,那么理论上可以节约很多Kernel提交的开销。

 

CUDA Graph也有其自身的限制,它的设计思路是将多个任务单元作为一个快照进行组合,也就意味着这个快照的参数和结构组成是固定的,不能变换,同时实例化这个快照是比较耗时的,但如果这个快照被反复执行(replay)的次数足够多,实例化快照的时间是可以忽略的。

 

以一个简单的Kernel为例介绍CUDA Graph是如何影响性能输出的。这里需要自己开发构造一个Kernel:可以根据运算复杂度调整执行时间,但在运行过程中没有HostDevice侧的数据交互。

 

以下分析均基于这个自定义Kernel进行。通过对比CUDA Graph优化前后的性能数据(图2)可以看到CUDA Graph对于执行时间越小的Kernel性能提升越明显,原因是Kernel提交的开销占比会更大(假设单次提交的开销是固定的,接下来会证明这一假设)。

 

image.png

图 不同执行时间kernel CUDA Graph优化后性能提升对照表

CUDA Graph 性能优化原理

为什么Kernel的提交会有系统开销并最终影响到GPU卡的性能输出?

 

从图1GPU异步执行逻辑来看,GPU完全可以按照CUDA Stream的队列顺序自己控制Kernel的执行节奏,只要队列中的任务足够,就能输出最大的性能。

 

Kernel提交的开销究竟在哪里?

 

3 可以有一个侧面的解释。在Kernel的执行过程中是有持续的双向数据流量的。而且这个流量和Kernel的执行时间是成反比的。这是个很重要的信息,因为Kernel执行过程中是没有运算数据流量的,HostToDevice的流量就是CPUKernel提交产生的,DeviceToHost的流量就是GPU执行完Kernel需要和Host交互产生的。而且这个流量是和Kernel的提交频率有关,和Kernel本身并没有关系。

 

image.png

图 不同执行时间kernel对应的GPU流量对照表

 

进一步研究Kernel提交究竟会有多大的数据流量,图4 做了一个展示,单次Kernel的提交产生数据流量大约在1KBGPU执行与Host同步的数据量大约在0.22KB,而且从统计结果看与Kernel的大小无关。这也可以证明前面的假设:Kernel的提交开销总体上是固定的。

 

image.png

4. 不同Kernel单次提交产生的数据流量对照表

CUDA Graph引入分析总结:

∙        cuda kernel在执行时存在确定的HostDevice侧交互

∙        交互的频率或流量与cuda kernel的提交频率有关,与cuda kernel大小无关

∙        CUDA Graph通过组合Kernel的方式可以将Kernel提交频率大幅降低,提高GPU的性能输出,但对于执行时间长的Kernel性能优化不明显。

∙        对于HostDevice端延时明显的场景,这种优化都是有益的。因为这个Kernel的提交开销本质上就是H2D 延时的开销,延时越小Kernel提交的效率就越高。

∙        对于物理机为了能够得到极致的性能可以尽量减少中间PCIe Switch的级数,因为每一级的switch引入RTT延时大约在0.3us,我们目前使用的GPU Box机型普遍有2Switch,引入RTT延时在0.6us。如果是采用gn7i的机型,GPU卡直连PCIe Root Complex,这0.6us是完全没有的,性能表现在小Kernel占比较高的场景中会更优越。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
26 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
3天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
22 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
3天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
36 17
|
3天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
28 14
|
2天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
32 12
|
2天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
36 10
|
2天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
28 10
|
2天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
机器学习/深度学习 人工智能 算法
下一篇
DataWorks