带你读《弹性计算技术指导及场景应用》——2. 技术改变AI发展:RDMA能优化吗?GDR性能提升方案

简介: 带你读《弹性计算技术指导及场景应用》——2. 技术改变AI发展:RDMA能优化吗?GDR性能提升方案

简介:随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。GPUDirect RDMA Kepler GPU CUDA 5.0 中引入的一项技术,可以让使用pcie标准的gpu和第三方设备进行直接的数据交换,而不涉及CPU

背景:GPUDirect RDMA Kepler GPU CUDA 5.0 中引入的一项技术,可以让使用pcie标准的gpu和第三方设备进行直接的数据交换,而不涉及CPU

 

传统上,当数据需要在 GPU 和另一个设备之间传输时,数据必须通过 CPU,从而导致潜在的瓶颈并增加延迟。使用 GPUDirect,网络适配器和存储驱动器可以直接读写 GPU 内存,减少不必要的内存消耗,减少 CPU 开销并降低延迟,从而显著提高性能。当前网络通信已经成为分布式机器学习的性能瓶颈,所以GDR技术的诞生对提高gpu通信性能至关重要

GDR技术相较之前技术的升级点

下图直观的展示了gdr技术的核心点所在,归纳来说就是GPUDirect RDMA 技术使得数据流绕过主机内存和 CPU,直接走pcie链路,降低了传输延迟,加快了数据交换速度,并可以减轻 CPU 负载,释放 CPU 的计算能力,同时也避免了数据在主机内存中的复制,大大提升了性能。

image.png

那么,GDR就一定比传统方式快吗?

前文介绍了gdr的优势,仿佛gdr对比传统方式有百利而无一害,那么gdr就一定快吗?我们可以看下如下拓扑结构

我们拥有了如下图所示的拓扑,gpu与网卡是跨rc

image.png

这时候假设我们想要与对端机器进行一个通信,使能了gdr之后的整个路径流程如下图所示

image.png

首先是由网卡发起dma readrequestgpu收到之后再返回,网卡在收到dma read请求返回的数据接着rdma write到对端的网卡,再dma writegpu中,由于gdr技术是基于pcie标准的,所以整体链路都是需要通过整个pcie链路来触达,于是我们单看一端,链路就会是一个dma_read request翻山越岭,翻过rc,翻过switch到达gpu然后再是tlp包翻山越岭翻越switch翻越rc再到网卡,这么长的链路会导致延迟增大

而如果不使用gdr,整个链路则会是gpu数据搬运到系统内存,再从系统内存搬运到网卡,整体是pipline起来的,这种情况下,由于pcie链路长导致延迟大,使用gdr性能是可能差于不使用gdr的。

那么gdr的合适使用场景是什么呢,比较推荐的场景就是gpu与第三方设备在同switch下的场景,这种情况下是存在性能增益的

长拓扑链路的可能改进方案

那么对于上面那种拓扑,是否存在方案可以将其性能提升呢?上面这种拓扑性能差的最大问题为整个pcie链路过长,如果能缩短链路就可以降低延迟,提升性能,于是我们把眼光放到了dma_read上。

dma write的优势

如果将网卡发出的dma read替换成gpu发起的dma write,就可以降低一半的pcie链路长导致的时延,同时dma write相较于dma read也存在本身性能上的优势,对于readpcie采用切分传输的方式,首先需求方发起一个读请求,完成器发送 ACK DLLP 来确认需求方的读取请求,接下来完成器再返回一个completion data,那个completion date会被切分到多个completion包里,而write则是单一包,于是就会导致read 的吞吐是低于write的吞吐的,举个例子,假设read rerquest512bytes,而completion包大小为256 bytes,那么最大最理想的读吞吐则如下:

completion packets需要的数量为 512/256 = 2

没有 ECRC 3 dword TLP 标头的开销为 2*20=40bytes

最大吞吐为 512/512 + 40=92%

下图即为这个例子的一个示意图,read需要有两个completion包而write则是单一包即完成。

image.png

以上的计算为读吞吐最大最理想的情况,pcie标准定义了read completion boundary (RCB) 参数,这个参数定义了一个read request被几个completion 包回复的边界,对于root complext来说,rcb的值是64bytes或者128bytes,对于其他pcie设备来说,则是128bytes

对于没对齐的read request来说,吞吐数据还会更差。

所以改成dma write相较于dma read来说,有时延上的提升,同时也有吞吐上的提升。

优化后的方案整体链路就如下图所示:

image.png

简单尝试

当前rdma协议是不支持这种方式的,所以就需要自己探索下是否可行,那么第一点就是gpu需要能主动对第三方设备发起dma write,我们知道gpu是可以对gpu进行dma write的,那么下面就做一个简单的试验。

image.png

image.png

可以看到是可以跑通的,即gpu可以对非gpu地址主动dma write

可能遇到的问题

那么如果需要让gpu来发起dma write还有哪些方面需要考虑呢?

1)丢包问题

首先,之前由网卡发起是因为网卡这边可以计算到发包一定能成功再发起dma read请求,这样tlp包到了网卡就能顺畅发出去,不存在丢包风险,当前由gpu发起的话tlp包抵达网卡后,如果网卡接收到包就直接发出就存在丢包风险,所以需要有一个规避方案,网卡需要计算一定能发再发,于是就需要有一个缓存的地方将可能丢包的包先缓存起来

2)调度问题

其次,gpu直接dma write到网卡的tlp包可能不会被网卡所接收,需要在gpu和网卡间达成约定,gpu发的那些包网卡不进行丢弃而是调度管理起来发送到对端,那么就需要gpu这边能kick doorbell,通知网卡收到的dma数据包需要留下,有一种方案就是移植部分libverbsgpu上面去跑,这样子gpu就可以与网卡进行直接通信

另一个就是需要封装一个api,应用发起rdma命令后,使之前让网卡发起dma read的流程变为让gpu发起dma write

总结

综上所示,通过以下方法,可以提升gdr性能:

∙        上层封装一个api可以使gpu发起dma write

∙        libverbs移植部分到gpu上跑

∙        gpu主动发起dma write

∙        网卡那边增加缓存,对于不是一定有把握发成功的包先进行缓存,当确定能发送以后再将包发送出去

当然,整个方案的落地也还有很多工作要做,需要修改rdma协议,同时在缓存与调度方面也需要很多工作进行,但收益也是显而易见的,能大大提升gdr的通用性与性能,使gdr在长topo链路时也变得可用。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
人工智能 安全 架构师
不只是聊天:从提示词工程看AI助手的优化策略
不只是聊天:从提示词工程看AI助手的优化策略
382 119
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
619 30
|
4月前
|
人工智能 自然语言处理 物联网
GEO优化方法有哪些?2025企业抢占AI流量必看指南
AI的不断重塑传统的信息入口之际,用户的搜索行为也从单一的百度、抖音的简单的查找答案的模式,逐渐转向了对DeepSeek、豆包、文心一言等一系列的AI对话平台的更加深入的探索和体验。DeepSeek的不断迭代优化同时,目前其月活跃的用户已破1.6亿,全网的AI用户规模也已超过6亿,这无疑为其下一阶段的迅猛发展提供了坚实的基础和广泛的市场空间。
|
4月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
609 1
|
4月前
|
人工智能 缓存 并行计算
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
402 1
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
803 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
人工智能 搜索推荐 JavaScript
【Geo专家于磊】深度解析:Geo优化中的Schema标签,如何让你的内容在AI时代脱颖而出?
微笑老师详解Geo优化中Schema标签的写法,揭示如何通过结构化数据提升AI时代下的内容可见性。从选择类型、填写关键属性到JSON-LD格式应用与测试验证,全面掌握Geo优化核心技巧,助力本地商家在搜索结果中脱颖而出。(238字)
469 0
|
4月前
|
人工智能 自然语言处理 算法
AISEO咋做?2025年用AI优化SEO和GEO 的步骤
AISEO是AI与SEO结合的优化技术,通过人工智能生成关键词、标题、内容等,提升网站排名。它支持多语言、自动化创作,并利用高权重平台发布内容,让AI搜索更易抓取引用,实现品牌曝光与流量增长。
|
4月前
|
数据采集 人工智能 程序员
PHP 程序员如何为 AI 浏览器(如 ChatGPT Atlas)优化网站
OpenAI推出ChatGPT Atlas,标志AI浏览器新方向。虽未颠覆现有格局,但为开发者带来新机遇。PHP建站者需关注AI爬虫抓取特性,优化技术结构(如SSR、Schema标记)、提升内容可读性与语义清晰度,并考虑未来agent调用能力。通过robots.txt授权、结构化数据、内容集群与性能优化,提升网站在AI搜索中的可见性与引用机会,提前布局AI驱动的流量新格局。
233 8

热门文章

最新文章