PAI+Hologres基于大模型搭建企业级知识库

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

背景信息

  • Hologres是阿里巴巴自研一站式实时数仓产品,不仅支持海量数据多维分析(OLAP)、高并发低延迟的在线数据服务(Serving),还与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。关于Proxima在Hologres中的应用,请参见Proxima向量计算

  • PAI-EAS是阿里云的模型在线服务平台,支持用户将模型一键部署为在线推理服务或AI-Web应用,可以一键部署LLM推理、AIGC等热门服务应用。PAI-EAS适用于实时推理、近实时异步推理等多种AI推理场景,具备Serverless自动扩缩容和完整运维监控体系能力。详情请参见EAS产品架构

  • LangChain是一个开源框架,可以将大模型、向量数据库、定制语料结合,高效完成专属问答知识库的搭建。Hologres现已被LangChain作为向量数据库集成,详情请参见LangChain-Hologres。

  • 计算巢服务是一个开放给服务商和用户的服务管理PaaS平台,为服务商和用户提供了高效、便捷、安全的服务使用体验,服务商能更好地在阿里云上部署、交付和管理服务,用户能集中管理在阿里云上订阅的各类服务商提供的服务。通过计算巢,可以一键完成问答知识库所需的硬件资源拉起与软件资源部署。计算巢服务详情介绍,请参见什么是计算巢服务
    推荐产品:实时数仓Hologres(原交互式分析)

前提条件

若您使用RAM用户进行知识库搭建,请确认RAM用户已具备相应的权限。需要的权限和授权方式,请参见为用户侧RAM用户(子账号)授权

创建计算巢服务实例

1、访问计算巢服务市场页面,选择Hologres+PAI一键部署企业级问答知识库,并单击正式创建。
2、在创建服务实例页面,配置以下参数。

image.png

3、单击下一步:确认订单,在订单确认页面,确认依赖检查信息和授权信息,然后单击立即创建。

服务实例创建成功之后,在服务实例管理列表查看已创建的服务实例状态。

使用知识库

1、配置并连接知识库。

a、访问服务实例管理页面,单击已部署的实例ID,进入服务实例详情页面。

b、在实例信息区域,单击endpoint,进入Hologres+大模型WebUI。

image.png

c、在Hologres+大模型WebUI的设置页签,配置以下参数。

image.png

  • User:阿里云账号或RAM用户的AccessKey ID。您可以进入AccessKey管理页面获取AccessKey ID。

  • Password:AccessKey ID对应的AccessKey Secret。您可以进入AccessKey管理页面获取AccessKey Secret。

说明
Embedding模型、模型在线服务PAI-EAS连接信息与计算巢部署的Hologres实例的VPC Host、Port、Database(默认为:chatbot)信息已配置,无需修改。

d、单击连接Hologres。

在连接信息中返回连接Hologres成功内容,即说明连接成功。

在上传页签,选择您的专属语料数据文件,然后单击上传。本文以语料示例文件为例。

2、上传完成后在状态区域,返回成功上传 1 个文件 [ example_data.txt, ] ! 内容,即说明上传成功。

image.png

3、在聊天页签,配置问题反馈相关参数。

image.png

4、在提问框中输入您的问题,并单击提交。
image.png

说明
您可以进一步使用PAI-EAS部署的大模型的调用信息,将知识库接入实际业务场景进行使用,例如:接入钉钉聊天群聊,详情请参见使用Hologres和大模型免费定制专属聊天机器人。

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
目录
相关文章
|
1月前
|
存储 人工智能 自然语言处理
RAG:增强大模型知识库的新范式
RAG:增强大模型知识库的新范式
431 99
|
6月前
|
人工智能 自然语言处理 知识图谱
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。
1351 55
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
|
5月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
4月前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
4月前
|
人工智能 自然语言处理 数据挖掘
智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化
智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化
|
3月前
|
存储 自然语言处理 监控
民航机场大模型私有知识库搭建步骤:技术选型 + 实施路径全解析!
近年来,民航机场面临知识管理难题,大模型技术为构建高效、安全的企业知识库提供了新思路。本文介绍知识库发展历程、大模型应用挑战,并详述私有化部署策略与八大实施步骤,助力民航提升运营效率与服务质量。
|
4月前
|
人工智能 数据库
智能体(AI Agent)开发实战之【LangChain】(四)结合大模型基于RAG实现本地知识库问答和纠错
本文介绍如何基于RAG实现知识库问答系统的输入内容纠错功能。通过加载本地知识库、构建向量数据库,结合大语言模型对输入文本进行检索比对与纠错优化,提升问答准确性。
|
12月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。

热门文章

最新文章