PAI+Hologres基于大模型搭建企业级知识库

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

背景信息

  • Hologres是阿里巴巴自研一站式实时数仓产品,不仅支持海量数据多维分析(OLAP)、高并发低延迟的在线数据服务(Serving),还与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。关于Proxima在Hologres中的应用,请参见Proxima向量计算

  • PAI-EAS是阿里云的模型在线服务平台,支持用户将模型一键部署为在线推理服务或AI-Web应用,可以一键部署LLM推理、AIGC等热门服务应用。PAI-EAS适用于实时推理、近实时异步推理等多种AI推理场景,具备Serverless自动扩缩容和完整运维监控体系能力。详情请参见EAS产品架构

  • LangChain是一个开源框架,可以将大模型、向量数据库、定制语料结合,高效完成专属问答知识库的搭建。Hologres现已被LangChain作为向量数据库集成,详情请参见LangChain-Hologres。

  • 计算巢服务是一个开放给服务商和用户的服务管理PaaS平台,为服务商和用户提供了高效、便捷、安全的服务使用体验,服务商能更好地在阿里云上部署、交付和管理服务,用户能集中管理在阿里云上订阅的各类服务商提供的服务。通过计算巢,可以一键完成问答知识库所需的硬件资源拉起与软件资源部署。计算巢服务详情介绍,请参见什么是计算巢服务
    推荐产品:实时数仓Hologres(原交互式分析)

前提条件

若您使用RAM用户进行知识库搭建,请确认RAM用户已具备相应的权限。需要的权限和授权方式,请参见为用户侧RAM用户(子账号)授权

创建计算巢服务实例

1、访问计算巢服务市场页面,选择Hologres+PAI一键部署企业级问答知识库,并单击正式创建。
2、在创建服务实例页面,配置以下参数。

image.png

3、单击下一步:确认订单,在订单确认页面,确认依赖检查信息和授权信息,然后单击立即创建。

服务实例创建成功之后,在服务实例管理列表查看已创建的服务实例状态。

使用知识库

1、配置并连接知识库。

a、访问服务实例管理页面,单击已部署的实例ID,进入服务实例详情页面。

b、在实例信息区域,单击endpoint,进入Hologres+大模型WebUI。

image.png

c、在Hologres+大模型WebUI的设置页签,配置以下参数。

image.png

  • User:阿里云账号或RAM用户的AccessKey ID。您可以进入AccessKey管理页面获取AccessKey ID。

  • Password:AccessKey ID对应的AccessKey Secret。您可以进入AccessKey管理页面获取AccessKey Secret。

说明
Embedding模型、模型在线服务PAI-EAS连接信息与计算巢部署的Hologres实例的VPC Host、Port、Database(默认为:chatbot)信息已配置,无需修改。

d、单击连接Hologres。

在连接信息中返回连接Hologres成功内容,即说明连接成功。

在上传页签,选择您的专属语料数据文件,然后单击上传。本文以语料示例文件为例。

2、上传完成后在状态区域,返回成功上传 1 个文件 [ example_data.txt, ] ! 内容,即说明上传成功。

image.png

3、在聊天页签,配置问题反馈相关参数。

image.png

4、在提问框中输入您的问题,并单击提交。
image.png

说明
您可以进一步使用PAI-EAS部署的大模型的调用信息,将知识库接入实际业务场景进行使用,例如:接入钉钉聊天群聊,详情请参见使用Hologres和大模型免费定制专属聊天机器人。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
相关文章
|
26天前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
78 2
|
16天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
68 3
|
23天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
22天前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
39 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
26天前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
34 3
【机器学习】大模型驱动下的医疗诊断应用
|
5天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
21 1
|
8天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
14天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
59 2
|
22天前
|
机器学习/深度学习 前端开发 网络架构
Django如何调用机器学习模型进行预测
Django如何调用机器学习模型进行预测
44 5
|
20天前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
177 3