PAI+Hologres基于大模型搭建企业级知识库

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

背景信息

  • Hologres是阿里巴巴自研一站式实时数仓产品,不仅支持海量数据多维分析(OLAP)、高并发低延迟的在线数据服务(Serving),还与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。关于Proxima在Hologres中的应用,请参见Proxima向量计算

  • PAI-EAS是阿里云的模型在线服务平台,支持用户将模型一键部署为在线推理服务或AI-Web应用,可以一键部署LLM推理、AIGC等热门服务应用。PAI-EAS适用于实时推理、近实时异步推理等多种AI推理场景,具备Serverless自动扩缩容和完整运维监控体系能力。详情请参见EAS产品架构

  • LangChain是一个开源框架,可以将大模型、向量数据库、定制语料结合,高效完成专属问答知识库的搭建。Hologres现已被LangChain作为向量数据库集成,详情请参见LangChain-Hologres。

  • 计算巢服务是一个开放给服务商和用户的服务管理PaaS平台,为服务商和用户提供了高效、便捷、安全的服务使用体验,服务商能更好地在阿里云上部署、交付和管理服务,用户能集中管理在阿里云上订阅的各类服务商提供的服务。通过计算巢,可以一键完成问答知识库所需的硬件资源拉起与软件资源部署。计算巢服务详情介绍,请参见什么是计算巢服务
    推荐产品:实时数仓Hologres(原交互式分析)

前提条件

若您使用RAM用户进行知识库搭建,请确认RAM用户已具备相应的权限。需要的权限和授权方式,请参见为用户侧RAM用户(子账号)授权

创建计算巢服务实例

1、访问计算巢服务市场页面,选择Hologres+PAI一键部署企业级问答知识库,并单击正式创建。
2、在创建服务实例页面,配置以下参数。

image.png

3、单击下一步:确认订单,在订单确认页面,确认依赖检查信息和授权信息,然后单击立即创建。

服务实例创建成功之后,在服务实例管理列表查看已创建的服务实例状态。

使用知识库

1、配置并连接知识库。

a、访问服务实例管理页面,单击已部署的实例ID,进入服务实例详情页面。

b、在实例信息区域,单击endpoint,进入Hologres+大模型WebUI。

image.png

c、在Hologres+大模型WebUI的设置页签,配置以下参数。

image.png

  • User:阿里云账号或RAM用户的AccessKey ID。您可以进入AccessKey管理页面获取AccessKey ID。

  • Password:AccessKey ID对应的AccessKey Secret。您可以进入AccessKey管理页面获取AccessKey Secret。

说明
Embedding模型、模型在线服务PAI-EAS连接信息与计算巢部署的Hologres实例的VPC Host、Port、Database(默认为:chatbot)信息已配置,无需修改。

d、单击连接Hologres。

在连接信息中返回连接Hologres成功内容,即说明连接成功。

在上传页签,选择您的专属语料数据文件,然后单击上传。本文以语料示例文件为例。

2、上传完成后在状态区域,返回成功上传 1 个文件 [ example_data.txt, ] ! 内容,即说明上传成功。

image.png

3、在聊天页签,配置问题反馈相关参数。

image.png

4、在提问框中输入您的问题,并单击提交。
image.png

说明
您可以进一步使用PAI-EAS部署的大模型的调用信息,将知识库接入实际业务场景进行使用,例如:接入钉钉聊天群聊,详情请参见使用Hologres和大模型免费定制专属聊天机器人。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
相关文章
|
1天前
|
机器学习/深度学习 数据挖掘 定位技术
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
85 6
|
1月前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
55 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
103 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
74 12

热门文章

最新文章