百度Apollo:激光雷达检测技术深度解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 百度Apollo:激光雷达检测技术深度解析

引入

在自动驾驶技术的飞速发展中,感知系统的关键组件之一是激光雷达。百度Apollo平台作为领先的自动驾驶解决方案之一,其激光雷达检测技术在实现高精度环境感知方面发挥着关键作用。

一、 激光雷达在自动驾驶中的角色

激光雷达(LiDAR)是一种通过发射激光束并测量其返回时间来感知周围环境的传感器。在自动驾驶中,激光雷达的角色不可忽视,因为它提供了高精度的三维空间信息,用于检测障碍物、构建地图以及进行定位。

二、激光雷达的配置文件

激光雷达检测用于 3D 目标检测,它的输入是激光雷达点云,输出为检测到的物体的类型和坐标,具体的实现在lidar_detection_component中。它的流水线配置文件在

  • modules/perception/pipeline/config/lidar_detection_pipeline.pb.txt

一共分为 7 个阶段,其 POINTCLOUD_DETECTION_PREPROCESSORPOINTCLOUD_DETECTION_POSTPROCESSOROBJECT_FILTER_BANK 各包含 1 个

2.1 配置文件

和上图对应,lidar_detection_component组件一共分为 7 个阶段,具体的流水线配置如下。

pipeline_type: LIDAR_DETECTION
stage_type: POINTCLOUD_PREPROCESSOR
stage_type: POINTCLOUD_DETECTION_PREPROCESSOR
stage_type: MAP_MANAGER
stage_type: POINT_PILLARS_DETECTION
stage_type: POINTCLOUD_DETECTION_POSTPROCESSOR
stage_type: OBJECT_BUILDER
stage_type: OBJECT_FILTER_BANK
stage_config: {
  stage_type: POINTCLOUD_PREPROCESSOR
  enabled: true
  pointcloud_preprocessor_config: {
    filter_naninf_points: false
    filter_nearby_box_points: false
    box_forward_x: 2.0
    box_backward_x: -2.0
    box_forward_y: 2.0
    box_backward_y: -2.0
    filter_high_z_points: false
    z_threshold: 5.0
  }
}
stage_config: {
  stage_type: POINTCLOUD_DETECTION_PREPROCESSOR
  enabled: true
  plugin_config: {
    plugin_type: POINTCLOUD_DOWN_SAMPLE
    enabled: true
    pointcloud_downsample_config: {
      enable_downsample_pointcloud : true
      enable_downsample_beams : true
      x_min_range : -74.88
      x_max_range : 74.88
      y_min_range : -74.88
      y_max_range : 74.88
      z_min_range : -2.0
      z_max_range : 4.0
    }
  }
  pointcloud_detection_preprocessor_config:{
  }
}
stage_config: {
  stage_type: MAP_MANAGER
  enabled: true
  map_manager_config: {
    update_pose: false
    roi_search_distance: 120.0
  }
}
stage_config: {
  stage_type: POINT_PILLARS_DETECTION
  enabled: true
  point_pillars_detection_config: {
  }
}
stage_config: {
  stage_type: POINTCLOUD_DETECTION_POSTPROCESSOR
  enabled: true
  plugin_config: {
    plugin_type: POINTCLOUD_GET_OBJECTS
    enabled: true
    pointcloud_get_objects_config:{
    }
  }
}
stage_config: {
  stage_type: OBJECT_BUILDER
  enabled: true
  object_builder_config: {
  }
}
stage_config: {
  stage_type: OBJECT_FILTER_BANK
  enabled: true
  plugin_config: {
    plugin_type: ROI_BOUNDARY_FILTER
    enabled: true
    roi_boundary_filter_config: {
      distance_to_boundary_threshold: -1.0
      confidence_threshold: 0.5
      cross_roi_threshold: 0.6
      inside_threshold: 1.0
    }
  }
  object_filter_bank_config: {
  }
}
lidar_detection_config: {
}

三、激光雷达追踪

激光雷达追踪是一种使用激光雷达(LIDAR)技术来检测、跟踪和预测物体运动的过程。它通常涉及到对激光雷达数据的处理和分析,以确定物体的位置、速度和轨迹。

而在apollo 里面激光雷达跟踪用于追踪上面检测到的 3D 目标对象,它的输入是激光雷达点云检测结果,输出为跟踪到对象的 ID,具体的实现在 lidar_tracking_component 中。

它的流水线配置文件在 modules/perception/pipeline/config/lidar_tracking_pipeline.pb.txt 中,一共分为 2 个阶段,每个阶段各包含 2 个算法插件。

3.1 配置文件

stage_type: MLF_ENGINE
stage_type: FUSED_CLASSIFIER
stage_config: {
  stage_type: MLF_ENGINE
  enabled: true
  plugin_config: {
    plugin_type: MLF_TRACK_OBJECT_MATCHER
    enabled: true
    mlf_track_object_matcher_config: {
      foreground_mathcer_method: "MultiHmBipartiteGraphMatcher"
      background_matcher_method: "GnnBipartiteGraphMatcher"
      bound_value: 100
      max_match_distance: 4.0
    }
  }
  plugin_config: {
    plugin_type: MLF_TRACKER
    enabled: true
    mlf_tracker_config: {
      filter_name: "MlfShapeFilter"
      filter_name: "MlfMotionFilter"
    }
  }
  mlf_engine_config: {
    main_sensor: "velodyne128"
    use_histogram_for_match: true
    histogram_bin_size: 10
    output_predict_objects: false
    reserved_invisible_time: 0.3
    use_frame_timestamp: true
  }
}
stage_config: {
  stage_type: FUSED_CLASSIFIER
  enabled: true
  plugin_config: {
    plugin_type: CCRF_ONESHOT_TYPE_FUSION
    enabled: true
    ccrf_type_fusion_config: {
      classifiers_property_file_path: "./data/perception/lidar/models/fused_classifier/classifiers.property"
      transition_property_file_path: "./data/perception/lidar/models/fused_classifier/transition.property"
      transition_matrix_alpha: 1.8
    }
  }
  plugin_config: {
    plugin_type: CCRF_SEQUENCE_TYPE_FUSION
    enabled: true
    ccrf_type_fusion_config: {
      classifiers_property_file_path: "./data/perception/lidar/models/fused_classifier/classifiers.property"
      transition_property_file_path: "./data/perception/lidar/models/fused_classifier/transition.property"
      transition_matrix_alpha: 1.8
    }
  }
  fused_classifier_config {
    one_shot_fusion_method: "CCRFOneShotTypeFusion"
    sequence_fusion_method: "CCRFSequenceTypeFusion"
    enable_temporal_fusion: true
    temporal_window: 20.0
    use_tracked_objects: true
  }
}

四、Apollo激光雷达的应用

4.1 数据融合

Apollo平台采用多传感器融合的方法,将来自不同传感器的信息整合在一起,以获取更全面、准确的环境感知。激光雷达的数据与摄像头、毫米波雷达等传感器的数据相融合,提高了感知系统的鲁棒性。

4.2 障碍物检测

激光雷达通过测量返回时间来计算物体的距离,并通过旋转来获取物体的方位。这些数据用于高精度的障碍物检测,能够识别车辆、行人、建筑物等。

4.3 实时地图构建

激光雷达还用于实时地图构建,为自动驾驶车辆提供高精度的地图信息。这对于路径规划和决策制定至关重要。

4.4 激光雷达技术的挑战和创新

激光雷达技术在自动驾驶中面临着一些挑战,如对恶劣天气的适应性、点云处理的复杂性等。为了解决这些问题,Apollo平台在激光雷达技术上不断创新,采用先进的信号处理算法和机器学习技术,提高系统的性能。

未来展望

随着技术的不断发展,激光雷达技术在自动驾驶中将继续发挥重要作用。未来,我们可以期待更小型、高分辨率的激光雷达设备,以及更智能、自适应的感知系统。

目录
相关文章
|
22天前
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
43 3
|
6天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
35 3
|
6天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
19 2
|
9天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
32 3
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
67 11
|
11天前
|
Kubernetes Cloud Native 云计算
云原生技术深度解析:重塑企业IT架构的未来####
本文深入探讨了云原生技术的核心理念、关键技术组件及其对企业IT架构转型的深远影响。通过剖析Kubernetes、微服务、容器化等核心技术,本文揭示了云原生如何提升应用的灵活性、可扩展性和可维护性,助力企业在数字化转型中保持领先地位。 ####
|
12天前
|
自然语言处理 并行计算 数据可视化
免费开源法律文档比对工具:技术解析与应用
这款免费开源的法律文档比对工具,利用先进的文本分析和自然语言处理技术,实现高效、精准的文档比对。核心功能包括文本差异检测、多格式支持、语义分析、批量处理及用户友好的可视化界面,广泛适用于法律行业的各类场景。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
19天前
|
监控 Cloud Native 持续交付
云原生技术深度解析:重塑现代应用开发与部署范式####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在现代软件开发中的重要性。通过剖析容器化、微服务架构、持续集成/持续部署(CI/CD)等关键技术,本文旨在揭示云原生技术如何促进应用的敏捷性、可扩展性和高可用性,进而推动企业数字化转型进程。不同于传统摘要仅概述内容要点,本部分将融入具体案例分析,直观展示云原生技术在实际应用中的显著成效与挑战应对策略,为读者提供更加丰富、立体的理解视角。 ####
|
19天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
32 1

推荐镜像

更多