八大排序性能大揭秘:谁才是你心中的TOP1?

简介: 八大排序性能大揭秘:谁才是你心中的TOP1?

一、排序算法有那些

1.1 测试排序竞选

上述就是我们全部的常见算法了,但是由于有些算法时间复杂度实在太高了排序上千万个数据的话实在是太慢了可能半个小时都排不完

所以咱们只选择那些大人那桌的数据来进行性能测试,至于冒泡选择这些排序还是让他们去小孩那桌去喝哇哈哈吧!

1.1 最终参选选手:

  • 希尔排序
  • 堆排序
  • 快速排序
  • 归并排序
  • 计数排序

二、测试方案

2.1 随机数测试

本次我们采用 rand( ) 来自动生成随机数来进行生成数据进行排序但是 rand () 函数最多只能生成 3万个随机数我也我们进行+i 来增加数据的随机性

本次测试使用1000万个数据来对比

🍸 代码演示:

// 测试排序的性能对比
void TestOP()
{
  srand(time(0));
  const int N = 10000000;
  int* a1 = (int*)malloc(sizeof(int) * N);
  int* a2 = (int*)malloc(sizeof(int) * N);
  int* a3 = (int*)malloc(sizeof(int) * N);
  int* a4 = (int*)malloc(sizeof(int) * N);
  int* a5 = (int*)malloc(sizeof(int) * N);
  int* a6 = (int*)malloc(sizeof(int) * N);
  int* a7 = (int*)malloc(sizeof(int) * N);
  for (int i = 0; i < N; ++i)
  {
    a1[i] = rand()+i;
    a2[i] = a1[i];
    a3[i] = a1[i];
    a4[i] = a1[i];
    a5[i] = a1[i];
    a6[i] = a1[i];
    a7[i] = a1[i];
  }
  //int begin1 = clock();
  //InsertSort(a1, N);
  //int end1 = clock();
  int begin2 = clock();
  ShellSort(a2, N);
  int end2 = clock();
  //int begin3 = clock();
  //SelectSort(a3, N);
  //int end3 = clock();
  int begin4 = clock();
  HeapSort(a4, N);
  int end4 = clock();
  int begin5 = clock();
  QuickSort(a5, 0, N - 1);
  int end5 = clock();
  int begin6 = clock();
  MergeSort(a6, N);
  int end6 = clock();
  int begin7 = clock();
  CountSort(a7, N);
  int end7 = clock();
  //printf("InsertSort:%d\n", end1 - begin1);
  printf("ShellSort:%d\n", end2 - begin2);
  //printf("SelectSort:%d\n", end3 - begin3);
  printf("HeapSort:%d\n", end4 - begin4);
  printf("QuickSort:%d\n", end5 - begin5);
  printf("MergeSort:%d\n", end6 - begin6);
  printf("CountSort:%d\n", end7 - begin7);
  free(a1);
  free(a2);
  free(a3);
  free(a4);
  free(a5);
  free(a6);
}

📑 代码结果:

从这里就可以看到在排整数数据的排序来看计数排序是非常占优势的,直接拿下TOP1的排序性能排名我们的老大哥快排紧随其后

总体而言在当前1000万个较为不重复数据中:

计数排序 > 快速排序 > 希尔排序 > 堆排序 > 归并排序

🔥 注:当然这代表的并不绝对,希尔排序不一定比堆排差因为1000万个数据 而rand就算+i 避免了一些重复数据,但还是有很多。

2.2 重复值较为多的随机数测试

本次测试使用1000万个数据来对比,并不进行加工去重

诶这里来看计数依旧遥遥领先, 继续做稳老大哥的位置而归并在重复值较多的情况下跑到了第二

总体而言在当前1000万个重复数据较多的排序中:

计数排序 > 归并排序 > 快速排序 > 希尔排序 > 堆排序

三、排序稳定性对比

说到稳定性对比很多铁汁可能以为是 排序性能在各种场景的波动的性能稳定性大不不大但其实排序的稳定性其实不是这样算下面就来看看排序的稳定性到底是怎么算的吧

3.1 什么是排序稳定性

排序的稳定性是指在排完序后相同数据的顺序不变这才能确定一个排序是否稳定。

假设你是对考试比赛成绩来进行排序,但是同一分数内考生提交的时间不一样这就需要我们使用排序稳定的算法来进行排序了

  • 如果使用不稳定的排序那么考试顺不就全乱了这是绝对不能犯的错误

3.2 排序的稳定的有那些

冒泡排序

冒泡排序的思想是俩俩比较然后才进行交换但是如果数据一样的话肯定就不会进行交换这样相同数据的先后顺序就不会发生改变了

直接插入排序

直接插入排序也是当新数据来的时候如果和前一个数据一模一样的话那么就直接在其后面进行插入所以也不会打乱相同数据的先后顺序

归并排序

归并排序我们可以将其相同数据比较的时候优先归并前一个数据这样也不会打乱相同数据的先后顺序。

  • 这样可以改变稳定性的排序都是稳定的

3.3 那些排序为什么不稳定

希尔排序

由于希尔排序是分租来进行排序的所以相同数据可能分成很多不同的组会打乱其 相同数据的排序顺序所以是不稳定的

预排序的时候会分到不同的组所以不稳定

堆排序

堆排序是每次和子节点进行比较交换而当左右节点的数据一样的时候并不能确保先向下调整哪一个所以其稳定性也是不稳定的

快速排序

快速排序每次都会把前一个数据交换到中间或者其他地方所以他的性能也是不稳定的

计数排序

计数排序只能排序整形,而显示生活中对一些事务的排序往往需要排多种数据结构所以不能对其比较稳定性

四、排序性能总结表

目录
相关文章
十大排序引出的问题()
十大排序引出的问题()
40 0
|
4月前
|
数据可视化 数据挖掘 Python
揭秘数据排序的神秘面纱:如何用DataFrame排序和排名洞悉数据背后的秘密?
【8月更文挑战第22天】DataFrame排序和排名是数据分析的关键步骤,尤其在使用Python的Pandas库处理表格数据时尤为重要。通过对DataFrame使用`sort_values()`方法可实现基于一列或多列的灵活排序,而`rank()`方法则能轻松完成数据排名。例如,对学生信息DataFrame按分数排序及排名,或先按年龄排序再按分数排名,均可快速洞察数据模式与异常值,适用于金融分析和教育研究等多个领域。掌握这些技术有助于提高数据分析效率并深入理解数据。
57 1
|
7月前
|
算法 程序员
八大排序源码(含优化)
八大排序源码(含优化)
|
7月前
|
C语言
拒绝水文!八大排序(三)【适合初学者】快速排序
拒绝水文!八大排序(三)【适合初学者】快速排序
|
7月前
|
算法 搜索推荐 程序员
【十大排序】带你深入分析快速排序
【十大排序】带你深入分析快速排序
|
算法 搜索推荐 C语言
【八大排序(十)】八大排序效率与稳定性分析
【八大排序(十)】八大排序效率与稳定性分析
|
机器学习/深度学习 存储 搜索推荐
七大排序经典排序算法
七大排序经典排序算法
82 0
七大排序经典排序算法
|
开发工具
【排序引论】第二章 单机排序问题
【排序引论】第二章 单机排序问题
58 0
【排序引论】第二章 单机排序问题
|
存储 算法
七大常见排序,你究竟懂几个?(上)2
七大常见排序,你究竟懂几个?(上)
83 0
七大常见排序,你究竟懂几个?(上)2
|
分布式数据库
八大排序(下)
八大排序(下)
70 0
八大排序(下)