寒武纪AI训练卡MLU370-X8荣获2023年度卓越创新产品奖

简介: 中科寒武纪科技股份有限公司(以下简称“寒武纪”)凭借寒武纪AI训练卡MLU370-X8,荣获2023年度卓越创新产品奖

12月5日,由《经济观察报》、经观传媒共同举办的2023年度创新峰会于北京举行。此次峰会以“创新聚能·共链未来”为主题,邀请了近40位来自政、商、产、学、研等各界的重磅嘉宾,从企业数字化转型、司库建设、低碳转型、ESG、国药维新、数智融合等诸多热点领域分享前沿动态和创新实践。峰会现场还正式颁布了2023年度卓越创新领军名单。该榜单中,中科寒武纪科技股份有限公司(以下简称“寒武纪”)凭借寒武纪AI训练卡MLU370-X8,荣获2023年度卓越创新产品奖。

作为智能芯片领域全球知名的新兴公司,寒武纪一直专注于人工智能芯片产品的研发与技术创新,致力于打造人工智能领域的核心处理器芯片,让机器更好地理解和服务人类。目前,寒武纪能提供云边端一体、软硬件协同、训练推理融合、具备统一生态的系列化智能芯片产品和平台化基础系统软件。

MLU370-X8是寒武纪基于思元 370 智能芯片的新款智能训练卡。MLU370-X8搭载双芯片四芯粒思元370,集成寒武纪MLU-Link™多芯互联技术,主要面向训练任务,在业界应用广泛的YOLOv3、Transformer等训练任务中, 8卡计算系统的并行性能平均达到350W RTX GPU的155%。

值得关注的是,MLU370-X8智能加速卡支持MLU-Link™多芯互联技术,提供卡内及卡间互联功能。寒武纪为多卡系统专门设计了MLU-Link桥接卡,可实现4张加速卡为一组的8颗思元370芯片全互联,每张加速卡可获得200GB/s的通讯吞吐性能,带宽为PCIe 4.0 的3.1倍,可高效执行多芯多卡训练和分布式推理任务。

MLU370-X8加速卡在发布后,凭借其优异的产品竞争力,与部分头部互联网客户的部分场景实现了深度合作,寒武纪云端产品在阿里云等互联网公司形成一定收入规模。此外,部分客户已经完成产品导入,正在进行商务接洽。在金融领域,寒武纪与头部银行和知名企业深度交流OCR等相关业务及产品应用,同时就新的业务场景(如自然语言处理等)进行了深度技术交流,部分企业正在进行业务试行。在服务器厂商方面,寒武纪的产品也得到了头部服务器厂商的认可。

值得注意的是,寒武纪掌握的智能处理器指令集、智能处理器微架构、智能芯片编程语言、智能芯片数学库等核心技术,具有壁垒高、研发难、应用广等特点,对集成电路行业与人工智能产业具有重要的技术价值、经济价值和生态价值。

相关文章
|
12天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
50 2
【AI系统】感知量化训练 QAT
|
12天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
37 1
【AI系统】训练后量化与部署
|
11天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
46 8
|
25天前
|
人工智能 自然语言处理 算法
【AI问爱答-双十一返场周直播】AI产品专家直播解读重点AI应用场景怎么用?
阿里云【AI问爱答】栏目强势回归,11月25日至28日每晚19:00,连续四天直播,涵盖AI营销、企业办公、社交娱乐及大模型推理调优四大主题,助您深入了解AI应用,解决实际问题。欢迎预约观看!
|
1月前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
14天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
16天前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
2月前
|
SQL 存储 人工智能
【产品升级】Dataphin V4.3重大升级:AI“弄潮儿”,数据资产智能化
DataAgent如何助理业务和研发成为业务参谋?如何快速低成本的创建行业数据分类标准?如何管控数据源表的访问权限?如何满足企业安全审计需求?
683 1
【产品升级】Dataphin V4.3重大升级:AI“弄潮儿”,数据资产智能化
|
21天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
38 0
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
186 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣