C++11实用技术(三)std::future、std::promise、std::packaged_task、async

简介: C++11实用技术(三)std::future、std::promise、std::packaged_task、async


简介

C++的多线程指令是thread。例如

#include <iostream>
#include <thread>
// 线程函数,打印一条消息
void printMessage(const std::string& message) {
    std::cout << "Message: " << message << std::endl;
}
int main() {
    // 创建线程对象,并指定线程函数及其参数
    std::thread t(printMessage, "Hello, world!");
    // 等待线程执行完毕
    t.join();
    return 0;
}

我们可以通过thread创建多线程。并把执行任务函数以回调函数的形式传入多线程中去执行。但是通过thread有个问题:

我们没有获取任务函数的接口,也就是我们很难在主线程中拿到我们任务函数的返回值或者内部参数值。(可以通过全局变量来获取,但是有一定的并发风险,并且不优雅)。

而std::future、std::promise就是可以处理这类场景。

std::future&std::async

要想在thread中获得std::future对象还要结合std::promise使用,下面会讲到。

而C++11可以通过std::async来更方便地异步创建执行task,也就是多线程执行task(和thread功能一样)。并且async返回的结果可以用std::future接收。

例如:

#include <iostream>
#include <future>
int calculateSum(int a, int b) {
    return a + b;
}
int main() {
    std::future<int> result = std::async(calculateSum, 2, 3);
    // 执行其他操作...
    // 获取异步任务的结果
    int sum = result.get();
    // 输出结果
    std::cout << "Sum: " << sum << std::endl;
    return 0;
}

可以看到我们的async创建的异步task可以用std::future接收,并且可以在主线程使用.get()来获取返回值。

注意:

result.get()这里是阻塞的,会等到task执行完成才会拿到返回值。(拿到返回值后async就会被回收,不像thread还需要使用join())。


包含.get()在内,获取future结果有3种应用不同场景的方式(有兴趣可以多了解一下):

  • get:阻塞等待异步操作结束并返回结果。
  • wait:只是等待异步操作完成,没有返回值。
  • wait_for:轮询定时查询future状态,知道任务完成。

std::async还有两种线程的创建策略:

  • std::launch::async:在调用async时就开始创建线程,默认的就是这种。
  • std::launch::deferred:延迟加载方式创建线程。调用async时不创建线程,知道调用了future的get或者wait时才创建线程。

使用示例:

std::future<int> result = std::async(std::launch::async, calculateSum, 2, 3);
std::future<int> result = std::async(std::launch::deferred, calculateSum, 2, 3);

future注意点:

用.get()获取任务返回值,只能获取一次。多次获取会报错。

#include <iostream>
#include <future>
int calculateSum(int a, int b) {
  return a + b;
}
int main() {
  std::future<int> result = std::async(calculateSum, 2, 3);
  // 执行其他操作...
  // 获取异步任务的结果
  int sum = result.get();
  // 输出结果
  std::cout << "Sum: " << sum << std::endl;
  int sum1 = result.get();//这里第二次使用get会报错
  return 0;
}

上述int sum = result.get();和int sum1 = result.get();第二次使用会报错。

如果想多次获取异步任务的返回结果可以使用std::shared_future;

shared_future

future可以通过.share()来拿到shared_future对象。

#include <iostream>
#include <future>
// 异步任务函数,返回一个结果
int asyncTask() {
  // 模拟耗时操作
  std::this_thread::sleep_for(std::chrono::seconds(5));
  return 42;
}
int main() {
  // 创建异步任务,并获取 std::future 对象
  std::future<int> fut = std::async(std::launch::async, asyncTask);
  // 创建共享的 std::shared_future 对象
  std::shared_future<int> sharedFut = fut.share();
  // 在多个线程中获取共享的异步任务结果
  std::thread t1([&sharedFut]() {
    int result = sharedFut.get();
    std::cout << "Thread 1 Result: " << result << std::endl;
    });
  std::thread t2([&sharedFut]() {
    int result = sharedFut.get();
    std::cout << "Thread 2 Result: " << result << std::endl;
    });
  t1.join();
  t2.join();
  return 0;
}

上述使用 fut 创建了一个共享的 std::shared_future 对象 sharedFut,并将其传递给两个线程。这两个线程分别调用 sharedFut.get() 来获取共享的异步任务结果。

注意,std::shared_future 可以在多个线程中同时访问结果,而不会阻塞等待。这使得多个线程可以并发地获取异步任务的结果。

std::promise

上述future可以获取我们的异步task返回结果,而promise可以获取我们异步task的中间值。用于在一个线程中产生一个值,并在另一个线程中获取该值。它允许你在一个线程中设置一个值,并将其与一个 std::future 关联起来,以便在另一个线程中获取该值。

例如在主线程获取异步线程task任务中的局部函数sum值:

#include <iostream>
#include <future>
void calculateSum(std::promise<int>& promise, int a, int b) {
    int sum = a + b;
    // 设置值
    promise.set_value(sum);
}
int main() {
    std::promise<int> promise;
    std::future<int> result = promise.get_future();
    // 启动异步任务
    std::thread thread(calculateSum, std::ref(promise), 2, 3);//这里用std::async也是一样的,但这里我们不需要获取task的返回值,所以就使用thread。
    // 执行其他操作...
    // 获取异步任务的结果
    int sum = result.get();
    // 输出结果
    std::cout << "Sum: " << sum << std::endl;
    // 等待线程结束
    thread.join();
    return 0;
}

上述创建了一个 std::promise 对象 promise,并通过调用 promise.get_future() 获取与之关联的 std::future 对象 result。然后启动一个新线程,将 calculateSum 函数作为参数传递给它,并传递 promise 对象和两个整数参数。

在执行其他操作后,我们通过调用 result.get() 来获取异步任务的结果。这会阻塞当前线程,直到task任务内promise.set_value(sum)执行完成。

std::packaged_task

std::packaged_task 是一个类模板,用于包装可调用对象(如函数、函数对象或lambda表达式),并将其与 std::future 关联起来,以便在另一个线程中获取该可调用对象的结果。

例如:

#include <iostream>
#include <future>
int calculateSum(int a, int b) {
    return a + b;
}
int main() {
    std::packaged_task<int(int, int)> task(calculateSum);
    std::future<int> result = task.get_future();
    // 启动异步任务
    std::thread thread(std::move(task), 2, 3);
    // 执行其他操作...
    // 获取异步任务的结果
    int sum = result.get();
    // 输出结果
    std::cout << "Sum: " << sum << std::endl;
    // 等待线程结束
    thread.join();
    return 0;
}

使用 std::packaged_task 类模板创建了一个 task 对象,将 calculateSum 函数作为参数传递给它。然后,我们通过调用 task.get_future() 获取与之关联的 std::future 对象 result。

上面看起来packaged_task和promise有点像,promise是保存一个值,而packaged_task保存了一个函数。

std::promise、std::packaged_task和std::future的关系

上述可以看出promise和packaged_task都可以使用.get_future()获取对象,是因为它们内部都有future,以便访问操作结果。

promise是保存一个值,而packaged_task保存了一个函数。如果想获取某个值,就是用promise,如果想获取返回值,就使用packaged_task(获取返回值也可以使用async,上面有讲到)。

目录
相关文章
|
18天前
|
存储 前端开发 安全
C++一分钟之-未来与承诺:std::future与std::promise
【6月更文挑战第27天】`std::future`和`std::promise`是C++异步编程的关键工具,用于处理未完成任务的结果。`future`代表异步任务的结果容器,可阻塞等待或检查结果是否就绪;`promise`用于设置`future`的值,允许多线程间通信。常见问题包括异常安全、多重获取、线程同步和未检查状态。解决办法涉及智能指针管理、明确获取时机、确保线程安全以及检查未来状态。示例展示了使用`std::async`和`future`执行异步任务并获取结果。
27 2
|
20天前
|
安全 C++
C++一分钟之-字符串处理:std::string
【6月更文挑战第25天】`std::string`是C++文本处理的核心,存在于`&lt;string&gt;`库中。它支持初始化、访问、连接、查找、替换等操作。常见问题包括空指针解引用、越界访问和不当内存管理。要安全使用,确保字符串初始化,用`at()`检查边界,用`.empty()`检查空字符串,且无需手动释放内存。高效技巧包括预先分配内存、利用互转函数以及使用迭代器。记得正确比较和遍历字符串以保证代码效率和安全性。
38 5
|
19天前
|
存储 设计模式 安全
C++一分钟之-并发编程基础:线程与std::thread
【6月更文挑战第26天】C++11的`std::thread`简化了多线程编程,允许并发执行任务以提升效率。文中介绍了创建线程的基本方法,包括使用函数和lambda表达式,并强调了数据竞争、线程生命周期管理及异常安全等关键问题。通过示例展示了如何用互斥锁避免数据竞争,还提及了线程属性定制、线程局部存储和同步工具。理解并发编程的挑战与解决方案是提升程序性能的关键。
37 3
|
1月前
|
C++
c++中的using namespace std;
c++中的using namespace std;
|
3天前
|
设计模式 安全 编译器
【C++11】特殊类设计
【C++11】特殊类设计
22 10
|
8天前
|
C++
C++友元函数和友元类的使用
C++中的友元(friend)是一种机制,允许类或函数访问其他类的私有成员,以实现数据共享或特殊功能。友元分为两类:类友元和函数友元。类友元允许一个类访问另一个类的私有数据,而函数友元是非成员函数,可以直接访问类的私有成员。虽然提供了便利,但友元破坏了封装性,应谨慎使用。
39 9
|
4天前
|
存储 编译器 C语言
【C++基础 】类和对象(上)
【C++基础 】类和对象(上)
|
12天前
|
编译器 C++
【C++】string类的使用④(字符串操作String operations )
这篇博客探讨了C++ STL中`std::string`的几个关键操作,如`c_str()`和`data()`,它们分别返回指向字符串的const char*指针,前者保证以&#39;\0&#39;结尾,后者不保证。`get_allocator()`返回内存分配器,通常不直接使用。`copy()`函数用于将字符串部分复制到字符数组,不添加&#39;\0&#39;。`find()`和`rfind()`用于向前和向后搜索子串或字符。`npos`是string类中的一个常量,表示找不到匹配项时的返回值。博客通过实例展示了这些函数的用法。
|
12天前
|
存储 C++
【C++】string类的使用③(非成员函数重载Non-member function overloads)
这篇文章探讨了C++中`std::string`的`replace`和`swap`函数以及非成员函数重载。`replace`提供了多种方式替换字符串中的部分内容,包括使用字符串、子串、字符、字符数组和填充字符。`swap`函数用于交换两个`string`对象的内容,成员函数版本效率更高。非成员函数重载包括`operator+`实现字符串连接,关系运算符(如`==`, `&lt;`等)用于比较字符串,以及`swap`非成员函数。此外,还介绍了`getline`函数,用于按指定分隔符从输入流中读取字符串。文章强调了非成员函数在特定情况下的作用,并给出了多个示例代码。
|
12天前
|
C++
【C++】string类的使用④(常量成员Member constants)
C++ `std::string` 的 `find_first_of`, `find_last_of`, `find_first_not_of`, `find_last_not_of` 函数分别用于从不同方向查找目标字符或子串。它们都返回匹配位置,未找到则返回 `npos`。`substr` 用于提取子字符串,`compare` 则提供更灵活的字符串比较。`npos` 是一个表示最大值的常量,用于标记未找到匹配的情况。示例代码展示了这些函数的实际应用,如替换元音、分割路径、查找非字母字符等。