栈与队列相关OJ题

简介: 栈与队列相关OJ题



一、前言

前面学习了栈与队列的相关知识,及其基本实现。今天我们就来看看他们在题目中的应用吧。

此篇博客仅记录博主自己学习的一些有关栈与队列的基础OJ题,分享自己的做题过程和想法,如有错误,还请各位指出,这样能帮助我进步,谢谢。

话不多说,那我们就直接开始吧。


二、用队列实现栈

用队列实现栈

题目描述:请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。实现 MyStack 类:

1、void push(int x) 将元素 x 压入栈顶。

2、int pop() 移除并返回栈顶元素。

3、int top() 返回栈顶元素。

4、boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

思路:

代码如下:

typedef int Datatype;
typedef struct QueueNode
{
  struct QueueNode* next;
  Datatype data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
}Queue;
//初始化
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
}
//销毁
void QueueDestory(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
}
//队尾入队列
void QueuePush(Queue* pq, Datatype x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    printf("malloc is fail\n");
    exit(-1);
  }
    newnode->data = x;
    newnode->next = NULL;
  if (pq->tail == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
}
//队头出队列
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  QNode* cur = pq->head->next;
  if (cur == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    free(pq->head);
    pq->head = cur;
  }
}
//取队头的数据
Datatype QueueFront(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->head->data;
}
//取队尾的数据
Datatype QueueBack(Queue* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->tail->data;
}
//计算数据的个数
Datatype Queuesize(Queue* pq)
{
  assert(pq);
  int size = 0;
  QNode* cur = pq->head;
  while (cur)
  {
    cur = cur->next;
    size++;
  }
  return size;
}
//判空
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->head == NULL;
}
typedef struct 
{
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() 
{
    MyStack* st = (MyStack*)malloc(sizeof(MyStack));
    QueueInit(&st->q1);
    QueueInit(&st->q2);
    return st;
}
void myStackPush(MyStack* obj, int x) 
{
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1, x);
    }
    else
    {
        QueuePush(&obj->q2, x);
    }
}
int myStackPop(MyStack* obj) 
{
    Queue* EmptyQ = &obj->q1;
    Queue* NoEmptyQ = &obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        EmptyQ = &obj->q2;
        NoEmptyQ = &obj->q1;
    }
    while(Queuesize(NoEmptyQ) > 1)
    {
        QueuePush(EmptyQ, QueueFront(NoEmptyQ));
        QueuePop(NoEmptyQ);
    }
    int top = QueueFront(NoEmptyQ);
    QueuePop(NoEmptyQ);
    return top;
}
int myStackTop(MyStack* obj) 
{
    if(!QueueEmpty(&obj->q1))
    {
        return QueueBack(&obj->q1);
    }
    else
    {
        return QueueBack(&obj->q2);
    }
}
bool myStackEmpty(MyStack* obj) 
{
    return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) 
{
   QueueDestory(&obj->q1);
   QueueDestory(&obj->q2);
   free(obj);
}


三、用栈实现队列

用栈实现队列

题目描述:请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty)。实现 MyQueue 类:

1、void push(int x) 将元素 x 推到队列的末尾。

2、int pop() 从队列的开头移除并返回元素。

3、int peek() 返回队列开头的元素。

4、boolean empty() 如果队列为空,返回 true ;否则,返回 false。

思路

代码如下:

//初始化
void StackInit(SK* ps)
{
  assert(ps);
  ps->top = 0;//每次指向栈顶的下一个
  Datatype* newnode = (Datatype*)malloc(sizeof(Datatype) * 4);
  if (newnode == NULL)
  {
    printf("malloc fail");
    exit(-1);
  }
  else
  {
    ps->a = newnode;
  }
  ps->size = 4;
}
//销毁
void StackDestory(SK* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = 0;
  ps->size = 0;
}
//入栈
void StackPush(SK* ps, Datatype x)
{
  assert(ps);
  //满了就扩容
  if (ps->top == ps->size)
  {
    Datatype* newnode = (Datatype*)realloc(ps->a, ps->size * 2 * sizeof(Datatype));
    if (newnode == NULL)
    {
      printf("realloc fail");
      exit(-1);
    }
    else
    {
      ps->a = newnode;
      ps->size *= 2;
    }
  }
  ps->a[ps->top] = x;
  ps->top++;
}
//出栈
void StackPop(SK* ps)
{
  assert(ps);
  //如果栈空了还去调用Delete就直接报错
  assert(ps->top > 0);
  ps->top--;
}
//取栈顶元素
Datatype StackTop(SK* ps)
{
  assert(ps);
  //如果栈空了还去调用Top就直接报错
  assert(ps->top > 0);
  return ps->a[ps->top - 1];
}
//求数据个数
Datatype StackNum(SK* ps)
{
  return ps->top;
}
//判空
bool StackEmpty(SK* ps)
{
  assert(ps);
  return ps->top == 0;
}
typedef struct 
{
    SK pushSK;
    SK popSK;
} MyQueue;
MyQueue* myQueueCreate() 
{
    MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));
    StackInit(&obj->pushSK);
    StackInit(&obj->popSK);
    return obj;
}
void myQueuePush(MyQueue* obj, int x) 
{
    StackPush(&obj->pushSK, x);
}
int myQueuePop(MyQueue* obj) 
{
    if(StackEmpty(&obj->popSK))
    {
        while(!StackEmpty(&obj->pushSK))
        {
            StackPush(&obj->popSK, StackTop(&obj->pushSK));
            StackPop(&obj->pushSK);
        }
    }
    int top = StackTop(&obj->popSK);
    StackPop(&obj->popSK);
    return top;
}
int myQueuePeek(MyQueue* obj) 
{
    if(StackEmpty(&obj->popSK))
    {
        while(!StackEmpty(&obj->pushSK))
        {
            StackPush(&obj->popSK, StackTop(&obj->pushSK));
            StackPop(&obj->pushSK);
        }
    }
    return StackTop(&obj->popSK);
}
bool myQueueEmpty(MyQueue* obj) 
{
    return StackEmpty(&obj->pushSK) && StackEmpty(&obj->popSK);
}
void myQueueFree(MyQueue* obj) 
{
    StackDestory(&obj->pushSK);
    StackDestory(&obj->popSK);
    free(obj);
}


四、括号匹配

有效括号匹配

题目描述:给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。有效字符串需满足:

* 左括号必须用相同类型的右括号闭合。

* 左括号必须以正确的顺序闭合。

* 每个右括号都有一个对应的相同类型的左括号。

思路:这道题就可以使用我们学到的栈数据结构了。遍历字符串,如果是左括号就入栈,如果是右括号,就取栈顶元素与其进行比较判断。如果匹配就继续遍历,直到结束。一旦有不匹配就直接结束,返回false。如果最后栈为空了,就返回true。

代码实现如下:(栈的实现见题目二中)

bool isValid(char* s)
{
    SK sk;
    StackInit(&sk);
    while(*s)
    {
        if(*s == '(' || *s == '[' || *s == '{')
        {
            StackPush(&sk, *s);
            s++;
        }
        else
        {
            if(StackEmpty(&sk))//如果第一个就是右括号,那么栈为空,直接返回false
            {
                StackDestory(&sk);//防止内存泄漏
                return false;
            }
            Datatype top = StackTop(&sk);
            StackPop(&sk);
            if(    (top == '(' && *s == ')')
                || (top == '{' && *s == '}')
                || (top == '[' && *s == ']') )
            {
                s++;
            }
            else
            {
                StackDestory(&sk);//防止内存泄漏
                return false;
            }
         }
    }
    bool ret = StackEmpty(&sk);
    StackDestory(&sk);
    return ret;
}


五、设计循环队列

循环队列

题目描述:设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

* MyCircularQueue(k): 构造器,设置队列长度为 k 。

* Front: 从队首获取元素。如果队列为空,返回 -1 。

* Rear: 获取队尾元素。如果队列为空,返回 -1 。

* enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。

* deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。

* isEmpty(): 检查循环队列是否为空。

* isFull(): 检查循环队列是否已满。

思路:用数组实现更加方便。

解题代码:

typedef struct 
{
    int* a;
    int head;
    int tail;
    int k;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
MyCircularQueue* myCircularQueueCreate(int k) 
{
    MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    obj->a = malloc(sizeof(int) * (k+1));
    obj->head = obj->tail = 0;
    obj->k = k;
    return obj;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{
    if(myCircularQueueIsFull(obj))
        return false;
    obj->a[obj->tail] = value;
    obj->tail++;
    if(obj->tail == obj->k+1)
        obj->tail = 0;
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return false;
    obj->head++;
    if(obj->head == obj->k + 1)
        obj->head = 0;
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    return obj->a[obj->head];
}
int myCircularQueueRear(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    int prev = obj->tail-1;
    if(prev == -1)
        prev = obj->k;
    return obj->a[prev];
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{
    return obj->head == obj->tail;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) 
{
    int next = obj->tail + 1;
    if(next == obj->k+1)
        next = 0;
    return next == obj->head;
}
void myCircularQueueFree(MyCircularQueue* obj) 
{
    free(obj->a);
    free(obj);
}


六、结尾

以上四个题就是今天的全部内容了。三个题充分体现出了栈和队列这两种特殊的线性结构的特点。栈和队列依靠他们各自特殊的结构特点方便了人们的操作,简化了程序设计的问题。

目录
相关文章
|
22天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
105 9
|
13天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
21 1
|
15天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
18天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
20天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
47 4
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
33 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
25天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
初步认识栈和队列
初步认识栈和队列
61 10
|
1月前
数据结构(栈与列队)
数据结构(栈与列队)
20 1
|
1月前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
48 3