用scipy解决最优化问题

简介: 用scipy解决最优化问题

题目:已知x2 + y2 + z2 = 1,求 x + y + z 的最小值

这个问题相当于在约束条件下的极值问题的求解,在高等数学里,通用的方法是用拉格朗日乘子,通过求导的方式解决,这里使用scipy中的optimize模块来解决这个问题。

from scipy.optimize import minimize
import numpy as np
e = 1e-10 # 非常接近0的值
fun = lambda x : x[0] + x[1] + x[2]
cons = ({'type': 'eq', 'fun': lambda x: x[0]**2 + x[1]**2 + x[2]**2 - 1}, # x^2 + y^2 + z^2 = 1
       )
x0 = np.array((1.0, 0, 0)) # 设置初始值
res = minimize(fun, x0, method='SLSQP', constraints=cons)
print('最小值:',res.fun)
print('最优解:',res.x)
print('迭代终止是否成功:', res.success)
print('迭代终止原因:', res.message)

结果输出

最小值: -1.7320510374842677
最优解: [-0.57735549 -0.57734777 -0.57734777]
迭代终止是否成功: True
迭代终止原因: Optimization terminated successfully.

与期望输出一致。

参考文档

Python——使用scipy求解带约束的最优化问题

python求解带约束目标优化问题(非线性规划,粒子群,遗传,差分进化)

相关文章
|
17天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
15天前
|
缓存 大数据 C语言
python优化
python优化
30 5
|
23天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
52 13
|
19天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
44 8
|
20天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品供应链优化的深度学习模型
使用Python实现智能食品供应链优化的深度学习模型
38 8
|
25天前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之显著性检验:介绍显著性检验的基本概念、目的及在SciPy中的实现方法。通过scipy.stats模块进行显著性检验,包括正态性检验(使用偏度和峰度),并提供代码示例展示如何计算数据集的偏度和峰度。
27 2
|
25天前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
24 1
|
28天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
26 1
|
1月前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
25 3
|
1月前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
46 2