pytorch中的模型剪枝

简介: pytorch中的模型剪枝

剪枝是一种常用的模型压缩策略。通过将模型中不重要的连接失效,实现模型瘦身的效果,并减少计算量。PyTorch中实现的剪枝方式有三种:

  • 局部剪枝
  • 全局剪枝
  • 自定义剪枝

Pytorch中与剪枝有关的接口封装在torch.nn.utils.prune中。下面开始演示三种剪枝在LeNet网络中的应用效果,首先给出LeNet网络结构。

import torch
from torch import nn
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # 1: 图像的输入通道(1是黑白图像), 6: 输出通道, 3x3: 卷积核的尺寸
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5x5 是经历卷积操作后的图片尺寸
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, int(x.nelement() / x.shape[0]))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
局部剪枝

局部剪枝实验,假定对模型的第一个卷积层中的权重进行剪枝

model_1 = LeNet()
module = model_1.conv1
# 剪枝前
print(list(module.named_parameters()))
print(list(module.named_buffers()))
prune.random_unstructured(module, name="weight", amount=0.3)
# 剪枝后
print(list(module.named_parameters()))
print(list(module.named_buffers()))

运行结果

## 剪枝前
[('weight', Parameter containing:
tensor([[[[ 0.1729, -0.0109, -0.1399],
          [ 0.1019,  0.1883,  0.0054],
          [-0.0790, -0.1790, -0.0792]]],
    ...
        [[[ 0.2465,  0.2114,  0.3208],
          [-0.2067, -0.2097, -0.0431],
          [ 0.3005, -0.2022,  0.1341]]]], requires_grad=True)), ('bias', Parameter containing:
tensor([-0.1437,  0.0605,  0.1427, -0.3111, -0.2476,  0.1901],
       requires_grad=True))]
[]
## 剪枝后
[('bias', Parameter containing:
tensor([-0.1437,  0.0605,  0.1427, -0.3111, -0.2476,  0.1901],
       requires_grad=True)), ('weight_orig', Parameter containing:
tensor([[[[ 0.1729, -0.0109, -0.1399],
          [ 0.1019,  0.1883,  0.0054],
          [-0.0790, -0.1790, -0.0792]]],
    ...
        [[[ 0.2465,  0.2114,  0.3208],
          [-0.2067, -0.2097, -0.0431],
          [ 0.3005, -0.2022,  0.1341]]]], requires_grad=True))]
[('weight_mask', tensor([[[[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]]],
        [[[0., 1., 0.],
          [0., 1., 1.],
          [1., 0., 1.]]],
        [[[0., 1., 1.],
          [1., 0., 1.],
          [1., 0., 1.]]],
        [[[1., 1., 1.],
          [1., 0., 1.],
          [0., 1., 0.]]],
        [[[0., 0., 1.],
          [0., 1., 1.],
          [1., 1., 1.]]],
        [[[0., 1., 1.],
          [0., 1., 0.],
          [1., 1., 1.]]]]))]

模型经历剪枝操作后, 原始的权重矩阵weight参数不见了,变成了weight_orig。 并且剪枝前打印为空列表的module.named_buffers(),此时拥有了一个weight_mask参数。经过剪枝操作后的模型,原始的参数存放在了weight_orig中,对应的剪枝矩阵存放在weight_mask中, 而将weight_mask视作掩码张量,再和weight_orig相乘的结果就存放在了weight中。

全局剪枝

局部剪枝只能以部分网络模块为单位进行剪枝,更广泛的剪枝策略是采用全局剪枝(global pruning),比如在整体网络的视角下剪枝掉20%的权重参数,而不是在每一层上都剪枝掉20%的权重参数。采用全局剪枝后,不同的层被剪掉的百分比不同。

model_2 = LeNet().to(device=device)
# 首先打印初始化模型的状态字典
print(model_2.state_dict().keys())
# 构建参数集合, 决定哪些层, 哪些参数集合参与剪枝
parameters_to_prune = (
            (model_2.conv1, 'weight'),
            (model_2.conv2, 'weight'),
            (model_2.fc1, 'weight'),
            (model_2.fc2, 'weight'),
            (model_2.fc3, 'weight'))
# 调用prune中的全局剪枝函数global_unstructured执行剪枝操作, 此处针对整体模型中的20%参数量进行剪枝
prune.global_unstructured(parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.2)
# 最后打印剪枝后的模型的状态字典
print(model_2.state_dict().keys())

输出结果

odict_keys(['conv1.bias', 'conv1.weight_orig', 'conv1.weight_mask', 'conv2.bias', 'conv2.weight_orig', 'conv2.weight_mask', 'fc1.bias', 'fc1.weight_orig', 'fc1.weight_mask', 'fc2.bias', 'fc2.weight_orig', 'fc2.weight_mask', 'fc3.bias', 'fc3.weight_orig', 'fc3.weight_mask'])

当采用全局剪枝策略的时候(假定20%比例参数参与剪枝),仅保证模型总体参数量的20%被剪枝掉,具体到每一层的情况则由模型的具体参数分布情况来定。

自定义剪枝

自定义剪枝可以自定义一个子类,用来实现具体的剪枝逻辑,比如对权重矩阵进行间隔性的剪枝

class my_pruning_method(prune.BasePruningMethod):
    PRUNING_TYPE = "unstructured"
    def compute_mask(self, t, default_mask):
        mask = default_mask.clone()
        mask.view(-1)[::2] = 0
        return mask
def my_unstructured_pruning(module, name):
    my_pruning_method.apply(module, name)
    return module
model_3 = LeNet()
print(model_3)

在剪枝前查看网络结构

LeNet(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

采用自定义剪枝的方式对局部模块fc3进行剪枝

my_unstructured_pruning(model.fc3, name="bias")
print(model.fc3.bias_mask)

输出结果

tensor([0., 1., 0., 1., 0., 1., 0., 1., 0., 1.])

最后的剪枝效果与实现的逻辑一致。

参考文档

深度学习之模型压缩(剪枝、量化)

相关文章
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
326 2
|
13天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
32 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
63 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
110 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
190 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
50 3
PyTorch 模型调试与故障排除指南
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
4月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
161 4
|
4月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
714 1
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
226 2