tensorflow的模型使用flask制作windows系统服务

简介: tensorflow的模型使用flask制作windows系统服务

搜罗到两种方案,经测试都可正常运行。这两种方案各有利弊,可根据实际需求选择。

  1. nssm的方案
    将tensorflow模型的推理逻辑制作成flask服务,假设文件为app.py。其中的model_predict需要换成用户自己的推理模块。
# app.py文件
from flask import Flask, request
import numpy as np
from tensorflow.python.saved_model import tag_constants
from tensorflow.contrib.tensor_forest.python import tensor_forest
from tensorflow.python.ops import resources
import tensorflow.compat.v1 as tf
import json
from gevent import pywsgi
import multiprocessing
from multiprocessing import freeze_support
from datetime import datetime
import platform
app = Flask(__name__)
class predict():
    def __init__(self, model_path):
        # with tf.Session() as self.sess:
        self.sess = tf.Session()
        meta_graph_def = tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], model_path + '/001/')
        signature = meta_graph_def.signature_def
        self.x = signature['prediction'].inputs['input'].name
        self.result = signature['prediction'].outputs['output'].name
    def run(self, input_data):
        _input_data = []
        _input_data.append(input_data)
        y = self.sess.run(self.result, feed_dict={self.x: _input_data})
        return y
@app.route('/')
def hello():
    return 'hello world'
@app.route('/predict', methods=['POST'])
def model_predict():
    input_json = request.get_json()
    method = input_json['method']
    input_data = input_json['data']
    if method != "inference":
        results = {'ret_code':101,'ret_message':'字段错误'}
        return json.dumps(results,ensure_ascii=False)
    input_arr = np.array(input_data)
    try:
        result = pred_infer.run(input_arr)[0]
        if (result[1] > 0.5):
            ret_status = 'good'
        else:
            ret_status = 'bad'
        ret_code = 100
        results = {'ret_code':ret_code,'ret_message':'处理成功','result':result.tolist(),'ret_status':ret_status}
    except:
        ret_code =  201
        results = {'ret_code':ret_code,'ret_message':'参数错误'}
    results_json = json.dumps(results,ensure_ascii=False)
    return results_json
#model_path = '.\\models\\healthy\\model_state'
model_path = 'D:\\YourModelPath\\models\\model_state'
pred_infer = predict(model_path)
def MyServer(host, port):
    server = pywsgi.WSGIServer((host, port), app)
    server.serve_forever()
if __name__ == '__main__':
    MyServer('0.0.0.0', 8088)
  1. 将python文件打包成exe文件。
D:\Python36\Scripts\pyinstaller.exe -F .\app.py #dist目录下生成app.exe
  1. 命令行测试app.exe能否正常运行,提供推理服务。
    下载nssm,使用nssm实现注册/开启/关闭/更新/移除服务。
nssm\win32\nssm.exe install  appServer  #注册服务,appServer是服务名
nssm\win32\nssm.exe start  appServer    #开启服务,appServer是服务名
  1. pywin32的方案
    将tensorflow模型的推理逻辑改写成flask服务,假设文件为app.py(推理模块)和server.py(服务模块)。
# app.py文件
from flask import Flask, request
import numpy as np
from tensorflow.python.saved_model import tag_constants
from tensorflow.contrib.tensor_forest.python import tensor_forest
from tensorflow.python.ops import resources
import tensorflow.compat.v1 as tf
import json
from gevent import pywsgi
import multiprocessing
from multiprocessing import freeze_support
from datetime import datetime
import platform
app = Flask(__name__)
class predict():
    def __init__(self, model_path):
        # with tf.Session() as self.sess:
        self.sess = tf.Session()
        meta_graph_def = tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], model_path + '/001/')
        signature = meta_graph_def.signature_def
        self.x = signature['prediction'].inputs['input'].name
        self.result = signature['prediction'].outputs['output'].name
    def run(self, input_data):
        _input_data = []
        _input_data.append(input_data)
        y = self.sess.run(self.result, feed_dict={self.x: _input_data})
        return y
@app.route('/')
def hello():
    return 'hello world'
@app.route('/predict', methods=['POST'])
def model_predict():
    input_json = request.get_json()
    method = input_json['method']
    input_data = input_json['data']
    if method != "inference":
        results = {'ret_code':101,'ret_message':'字段错误'}
        return json.dumps(results,ensure_ascii=False)
    input_arr = np.array(input_data)
    try:
        result = pred_infer.run(input_arr)[0]
        if (result[1] > 0.5):
            ret_status = 'good'
        else:
            ret_status = 'bad'
        ret_code = 100
        results = {'ret_code':ret_code,'ret_message':'处理成功','result':result.tolist(),'ret_status':ret_status}
    except:
        ret_code =  201
        results = {'ret_code':ret_code,'ret_message':'参数错误'}
    results_json = json.dumps(results,ensure_ascii=False)
    return results_json
#model_path = '.\\models\\healthy\\model_state'
model_path = 'D:\\YourModelPath\\models\\model_state'
pred_infer = predict(model_path)
  1. 就是把WSGIServer调用的部分放到server.py中。拆分的原因很明显,解耦合,方便其他模型做服务时,只在app.py内改动。特别注意, 模型的路径需要用绝对路径,相对路径可以注册服务,但无法正常启动服务(闪退)。
# server.py文件
import win32serviceutil
from gevent.pywsgi import WSGIServer
from app import app
class Service(win32serviceutil.ServiceFramework):
    # 服务名
    _svc_name_ = "flask_gevent_service_test"
    # 显示服务名
    _svc_display_name_ = "flask gevent service test display name"
    # 描述
    _svc_description_ = "flask gevent service test description"
    def __init__(self, *args):
        super().__init__(*args)
        # host和ip绑定
        self.http_server = WSGIServer(('127.0.0.1', 8088), app)
        self.SvcStop = self.http_server.stop
        self.SvcDoRun = self.http_server.serve_forever
if __name__ == '__main__':
    win32serviceutil.HandleCommandLine(Service)
  1. 使用python自带的pythonServer实现注册/开启/关闭/更新/移除服务。
python server.py install  #注册服务
python server.py start    #开启服务
  1. 总结:在某些情况下无法使用nssm的方案,比如防火墙拦截等,这时可选择第二种方案。当然第二种方案的执行命令仍然需要python环境包,可以在此基础上将app.py和server.py两个文件打包成一个exe,方便移植。这部分操作读者可以参考第一种方案中的打包方法自行验证。
相关文章
|
25天前
|
安全 Windows
永久关闭 Windows 11 系统更新
永久关闭 Windows 11 系统更新
109 0
|
9天前
|
存储 负载均衡 Java
如何配置Windows主机MPIO多路径访问存储系统
Windows主机多路径(MPIO)是一种技术,用于在客户端计算机上配置多个路径到存储设备,以提高数据访问的可靠性和性能。本文以Windows2012 R2版本为例介绍如何在客户端主机和存储系统配置多路径访问。
50 13
如何配置Windows主机MPIO多路径访问存储系统
|
1月前
|
边缘计算 安全 网络安全
|
1月前
|
开发框架 .NET API
Windows Forms应用程序中集成一个ASP.NET API服务
Windows Forms应用程序中集成一个ASP.NET API服务
85 9
|
1月前
|
应用服务中间件 Apache Windows
免安装版的Tomcat注册为windows服务
免安装版的Tomcat注册为windows服务
85 3
|
1月前
|
Java 关系型数据库 MySQL
java控制Windows进程,服务管理器项目
本文介绍了如何使用Java的`Runtime`和`Process`类来控制Windows进程,包括执行命令、读取进程输出和错误流以及等待进程完成,并提供了一个简单的服务管理器项目示例。
32 1
|
1月前
|
Windows
Windows系统命令dir使用详解
Windows系统命令dir使用详解
|
2月前
|
Linux Windows
Windows系统批量创建文件夹的技巧
Windows系统批量创建文件夹的技巧
|
24天前
|
Windows
.NET 隐藏/自定义windows系统光标
【10月更文挑战第20天】在.NET中,可以使用`Cursor`类来控制光标。要隐藏光标,可将光标设置为`Cursors.None`。此外,还可以通过从文件或资源加载自定义光标来更改光标的样式。例如,在表单加载时设置`this.Cursor = Cursors.None`隐藏光标,或使用`Cursor.FromFile`方法加载自定义光标文件,也可以将光标文件添加到项目资源中并通过资源管理器加载。这些方法适用于整个表单或特定控件。
|
24天前
|
Apache 数据中心 Windows
将网站迁移到阿里云Windows系统云服务器,访问该站点提示连接被拒绝,如何处理?
将网站迁移到阿里云Windows系统云服务器,访问该站点提示连接被拒绝,如何处理?
下一篇
无影云桌面