图文结合纯c手写内存池

简介: 图文结合纯c手写内存池


前言

  本文从零到一,手把手实现一个内存池。

  比较出名的内存池有jemalloc和tcmalloc,这两个都是全局内存池,比较推荐使用tcmalloc。

  本专栏知识点是通过零声教育的线上课学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接 C/C++后台高级服务器课程介绍 详细查看课程的服务。

为什么要用内存池

  为什么要用内存池?首先,在7 * 24h的服务器中如果不使用内存池,而使用malloc和free,那么就非常容易产生内存碎片,早晚都会申请内存失败;并且在比较复杂的代码或者继承的屎山中,非常容易出现内存泄漏导致oom的问题。

  为了解决这两个问题,内存池就应运而生了。内存池预先分配一大块内存来做一个内存池,业务中的内存分配和释放都由这个内存池来管理,内存池内的内存不足时其内部会自己申请。所以内存碎片的问题就交由内存池的算法来优化,而内存泄漏的问题只需要遵守内存池提供的api,就非常容易避免内存泄漏了。

  即使出现了内存泄漏,排查的思路也很清晰。1.检查是不是内存池的问题;2.如果不是内存池的问题,就检查是不是第三方库的内存泄漏。

内存池的使用场景

  1. 全局内存池
  2. 一个连接一个内存池(本文实现这个场景的内存池)

设计一个内存池

总体介绍

  由于本文是一个连接一个内存池,所以后续介绍和代码都是以4k为分界线,大于4k的我们认为是大块内存;小于4k的我们认为是小块内存。并且注意这里的4k,并不是严格遵照4096,而是在描述上,用4k比较好描述。

  在真正使用内存之前,内存池提前分配一定数量且大小相等的内存块以作备用,当真正被用户调用api分配内存的时候,直接从内存块中获取内存(指小块内存),当内存块不够用了,再有内存池取申请新的内存块。而如果是需要大块内存,则内存池直接申请大块内存再返回给用户。

  内存池:就是将这些提前申请的内存块组织管理起来的数据结构,内存池实现原理主要分为分配,回收,扩容三部分。

  内存池原理之小块内存分配=> 内存池预申请一块4k的内存块,这里称为block,即block=4k内存块。当用户向内存池申请内存size小于4k时,内存池从block的空间中划分出去size空间,当再有新申请时,再划分出去。扩容=> 直到block中的剩余空间不足以分配size大小,那么此时内存池会再次申请一块block,再从新的block中划分size空间给用户。回收=> 每一次申请小内存,都会在对应的block中引用计数加1,每一次释放小内存时,都会在block中引用计数减1,只有当引用计数为零的时候,才会回收block使他重新成为空闲空间,以便重复利用空间。这样,内存池避免频繁向内核申请/释放内存,从而提高系统性能。

  内存池原理之大块内存分配=> 因为大块内存是大于4k的,所以内存池不预先申请内存,也就是用户申请的时候,内存池再申请内存,然后返回给用户。扩容=> 大块内存不存在扩容。回收=> 对于大块内存来说,回收就直接free掉即可。

  上面理论讲完了,下面来介绍如何管理小块内存和大块内存。

小块内存的分配与管理

  在创建内存池的时候,会预先申请一块4k的内存,并且在起始处将pool的结构体和node的结构体放进去,从last开始一直到end都是空闲内存,<last , end >中间的区域就用来存储小块内存。每一次mp_malloc,就将last指针后移,直到 e n d − l a s t < s i z e end - last < sizeendlast<size 时,进行扩容,将新block的last后移即可。

  • 初始状态
  • 分配内存
  • 扩容

大块内存的分配与管理

  对于大块内存,前面已经说了,用户申请的时候,内存池才申请

  • 申请一块大内存

  • 再申请一块大内存

内存池代码实现

向外提供的api

  • mp_create_pool:创建一个线程池,其核心是创建struct mp_pool_s这个结构体,并申请4k内存,将各个指针指向上文初始状态的图一样。
  • mp_destroy_pool:销毁内存池,遍历小块结构体和大块结构体,进行free释放内存
  • mp_malloc:提供给用户申请内存的api
  • mp_calloc:通过mp_malloc申请内存后置零,相当于calloc
  • mp_free:释放由mp_malloc返回的内存
  • mp_reset_pool:将block的last置为初始状态,销毁所有大块内存
  • monitor_mp_poll:监控内存池状态
struct mp_pool_s *mp_create_pool(size_t size);
void mp_destroy_pool(struct mp_pool_s *pool);
void *mp_malloc(struct mp_pool_s *pool, size_t size);
void *mp_calloc(struct mp_pool_s *pool, size_t size);
void mp_free(struct mp_pool_s *pool, void *p);
void mp_reset_pool(struct mp_pool_s *pool);
void monitor_mp_poll(struct mp_pool_s *pool, char *tk);

相关结构体的定义

  mp_pool_s 就是整个内存池的管理结构,我们做的内存池是一个连接一个内存池,所以对于整个程序而言,内存池对象是有很多个的。

  可能读者会有疑问,有了head,为什么还有current,是因为如果一个block剩余空间小于size超过一定次数后,将current指向下一个block,这样就加快内存分配效率,减少遍历次数。

//每4k一block结点
struct mp_node_s {
    unsigned char *end;//块的结尾
    unsigned char *last;//使用到哪了
    struct mp_node_s *next;//链表
    int quote;//引用计数
    int failed;//失效次数
};
struct mp_large_s {
    struct mp_large_s *next;//链表
    int size;//alloc的大小
    void *alloc;//大块内存的起始地址
};
struct mp_pool_s {
    struct mp_large_s *large;
    struct mp_node_s *head;
    struct mp_node_s *current;
};

内存对齐

访问速度是内存对齐的原因之一,另外一个原因是某些平台(arm)不支持未内存对齐的访问

  在4k里面划分内存,那么必然有很多地方是不对齐的,所以这里提供两个内存对齐的函数。那么为什么要内存对齐呢?其一:提高访问速度;其二:某些平台arm不支持未对其的内存访问,会出错。

#define mp_align(n, alignment) (((n)+(alignment-1)) & ~(alignment-1))
#define mp_align_ptr(p, alignment) (void *)((((size_t)p)+(alignment-1)) & ~(alignment-1))

创建与销毁内存池

  创建一个线程池,其核心是创建struct mp_pool_s这个结构体,并申请4k内存,将各个指针指向上文初始状态的图一样。

  销毁内存池,遍历小块结构体和大块结构体,进行free释放内存。

//创建内存池
struct mp_pool_s *mp_create_pool(size_t size) {
    struct mp_pool_s *pool;
    if (size < PAGE_SIZE || size % PAGE_SIZE != 0) {
        size = PAGE_SIZE;
    }
    //分配4k以上不用malloc,用posix_memalign
    /*
        int posix_memalign (void **memptr, size_t alignment, size_t size);
     */
    int ret = posix_memalign((void **) &pool, MP_ALIGNMENT, size); //4K + mp_pool_s
    if (ret) {
        return NULL;
    }
    pool->large = NULL;
    pool->current = pool->head = (unsigned char *) pool + sizeof(struct mp_pool_s);
    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
    pool->head->end = (unsigned char *) pool + PAGE_SIZE;
    pool->head->failed = 0;
    return pool;
}
//销毁内存池
void mp_destroy_pool(struct mp_pool_s *pool) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    struct mp_node_s *cur, *next;
    cur = pool->head->next;
    while (cur) {
        next = cur->next;
        free(cur);
        cur = next;
    }
    free(pool);
}

提供给用户的内存申请api

  申请的内存以size做区分,如果大于4k就分配大块内存,小于4k就去block里面划分。

//分配内存
void *mp_malloc(struct mp_pool_s *pool, size_t size) {
    if (size <= 0) {
        return NULL;
    }
    if (size > PAGE_SIZE - sizeof(struct mp_node_s)) {
        //large
        return mp_malloc_large(pool, size);
    }
    else {
        //small
        unsigned char *mem_addr = NULL;
        struct mp_node_s *cur = NULL;
        cur = pool->current;
        while (cur) {
            mem_addr = mp_align_ptr(cur->last, MP_ALIGNMENT);
            if (cur->end - mem_addr >= size) {
                cur->quote++;//引用+1
                cur->last = mem_addr + size;
                return mem_addr;
            }
            else {
                cur = cur->next;
            }
        }
        return mp_malloc_block(pool, size);// open new space
    }
}
void *mp_calloc(struct mp_pool_s *pool, size_t size) {
    void *mem_addr = mp_malloc(pool, size);
    if (mem_addr) {
        memset(mem_addr, 0, size);
    }
    return mem_addr;
}

小块内存block扩容

   所有的block都 e n d − l a s t < s i z e end - last < sizeendlast<size 时,进行扩容,将新block的last后移即可。

//new block 4k
void *mp_malloc_block(struct mp_pool_s *pool, size_t size) {
    unsigned char *block;
    int ret = posix_memalign((void **) &block, MP_ALIGNMENT, PAGE_SIZE); //4K
    if (ret) {
        return NULL;
    }
    struct mp_node_s *new_node = (struct mp_node_s *) block;
    new_node->end = block + PAGE_SIZE;
    new_node->next = NULL;
    unsigned char *ret_addr = mp_align_ptr(block + sizeof(struct mp_node_s), MP_ALIGNMENT);
    new_node->last = ret_addr + size;
    new_node->quote++;
    struct mp_node_s *current = pool->current;
    struct mp_node_s *cur = NULL;
    for (cur = current; cur->next; cur = cur->next) {
        if (cur->failed++ > 4) {
            current = cur->next;
        }
    }
    //now cur = last node
    cur->next = new_node;
    pool->current = current;
    return ret_addr;
}

分配大块内存

//size>4k
void *mp_malloc_large(struct mp_pool_s *pool, size_t size) {
    unsigned char *big_addr;
    int ret = posix_memalign((void **) &big_addr, MP_ALIGNMENT, size); //size
    if (ret) {
        return NULL;
    }
    struct mp_large_s *large;
    //released struct large resume
    int n = 0;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
            large->size = size;
            large->alloc = big_addr;
            return big_addr;
        }
        if (n++ > 3) {
            break;// 为了避免过多的遍历,限制次数
        }
    }
    large = mp_malloc(pool, sizeof(struct mp_large_s));
    if (large == NULL) {
        free(big_addr);
        return NULL;
    }
    large->size = size;
    large->alloc = big_addr;
    large->next = pool->large;
    pool->large = large;
    return big_addr;
}

释放内存

  如果是大块内存,找到之后直接释放;如果是小块内存,将引用计数减1,如果引用计数为0则重置last。

//释放内存
void mp_free(struct mp_pool_s *pool, void *p) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {//大块
        if (p == large->alloc) {
            free(large->alloc);
            large->size = 0;
            large->alloc = NULL;
            return;
        }
    }
    //小块 引用-1
    struct mp_node_s *cur = NULL;
    for (cur = pool->head; cur; cur = cur->next) {
//        printf("cur:%p   p:%p   end:%p\n", (unsigned char *) cur, (unsigned char *) p, (unsigned char *) cur->end);
        if ((unsigned char *) cur <= (unsigned char *) p && (unsigned char *) p <= (unsigned char *) cur->end) {
            cur->quote--;
            if (cur->quote == 0) {
                if (cur == pool->head) {
                    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
                }
                else {
                    cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
                }
                cur->failed = 0;
                pool->current = pool->head;
            }
            return;
        }
    }
}

内存池测试

//
// Created by 68725 on 2022/7/26.
//
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define PAGE_SIZE 4096
#define MP_ALIGNMENT 16
#define mp_align(n, alignment) (((n)+(alignment-1)) & ~(alignment-1))
#define mp_align_ptr(p, alignment) (void *)((((size_t)p)+(alignment-1)) & ~(alignment-1))
//每4k一block结点
struct mp_node_s {
    unsigned char *end;//块的结尾
    unsigned char *last;//使用到哪了
    struct mp_node_s *next;//链表
    int quote;//引用计数
    int failed;//失效次数
};
struct mp_large_s {
    struct mp_large_s *next;//链表
    int size;//alloc的大小
    void *alloc;//大块内存的起始地址
};
struct mp_pool_s {
    struct mp_large_s *large;
    struct mp_node_s *head;
    struct mp_node_s *current;
};
struct mp_pool_s *mp_create_pool(size_t size);
void mp_destroy_pool(struct mp_pool_s *pool);
void *mp_malloc(struct mp_pool_s *pool, size_t size);
void *mp_calloc(struct mp_pool_s *pool, size_t size);
void mp_free(struct mp_pool_s *pool, void *p);
void mp_reset_pool(struct mp_pool_s *pool);
void monitor_mp_poll(struct mp_pool_s *pool, char *tk);
void mp_reset_pool(struct mp_pool_s *pool) {
    struct mp_node_s *cur;
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    pool->large = NULL;
    pool->current = pool->head;
    for (cur = pool->head; cur; cur = cur->next) {
        cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
        cur->failed = 0;
        cur->quote = 0;
    }
}
//创建内存池
struct mp_pool_s *mp_create_pool(size_t size) {
    struct mp_pool_s *pool;
    if (size < PAGE_SIZE || size % PAGE_SIZE != 0) {
        size = PAGE_SIZE;
    }
    //分配4k以上不用malloc,用posix_memalign
    /*
        int posix_memalign (void **memptr, size_t alignment, size_t size);
     */
    int ret = posix_memalign((void **) &pool, MP_ALIGNMENT, size); //4K + mp_pool_s
    if (ret) {
        return NULL;
    }
    pool->large = NULL;
    pool->current = pool->head = (unsigned char *) pool + sizeof(struct mp_pool_s);
    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
    pool->head->end = (unsigned char *) pool + PAGE_SIZE;
    pool->head->failed = 0;
    return pool;
}
//销毁内存池
void mp_destroy_pool(struct mp_pool_s *pool) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    struct mp_node_s *cur, *next;
    cur = pool->head->next;
    while (cur) {
        next = cur->next;
        free(cur);
        cur = next;
    }
    free(pool);
}
//size>4k
void *mp_malloc_large(struct mp_pool_s *pool, size_t size) {
    unsigned char *big_addr;
    int ret = posix_memalign((void **) &big_addr, MP_ALIGNMENT, size); //size
    if (ret) {
        return NULL;
    }
    struct mp_large_s *large;
    //released struct large resume
    int n = 0;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
            large->size = size;
            large->alloc = big_addr;
            return big_addr;
        }
        if (n++ > 3) {
            break;// 为了避免过多的遍历,限制次数
        }
    }
    large = mp_malloc(pool, sizeof(struct mp_large_s));
    if (large == NULL) {
        free(big_addr);
        return NULL;
    }
    large->size = size;
    large->alloc = big_addr;
    large->next = pool->large;
    pool->large = large;
    return big_addr;
}
//new block 4k
void *mp_malloc_block(struct mp_pool_s *pool, size_t size) {
    unsigned char *block;
    int ret = posix_memalign((void **) &block, MP_ALIGNMENT, PAGE_SIZE); //4K
    if (ret) {
        return NULL;
    }
    struct mp_node_s *new_node = (struct mp_node_s *) block;
    new_node->end = block + PAGE_SIZE;
    new_node->next = NULL;
    unsigned char *ret_addr = mp_align_ptr(block + sizeof(struct mp_node_s), MP_ALIGNMENT);
    new_node->last = ret_addr + size;
    new_node->quote++;
    struct mp_node_s *current = pool->current;
    struct mp_node_s *cur = NULL;
    for (cur = current; cur->next; cur = cur->next) {
        if (cur->failed++ > 4) {
            current = cur->next;
        }
    }
    //now cur = last node
    cur->next = new_node;
    pool->current = current;
    return ret_addr;
}
//分配内存
void *mp_malloc(struct mp_pool_s *pool, size_t size) {
    if (size <= 0) {
        return NULL;
    }
    if (size > PAGE_SIZE - sizeof(struct mp_node_s)) {
        //large
        return mp_malloc_large(pool, size);
    }
    else {
        //small
        unsigned char *mem_addr = NULL;
        struct mp_node_s *cur = NULL;
        cur = pool->current;
        while (cur) {
            mem_addr = mp_align_ptr(cur->last, MP_ALIGNMENT);
            if (cur->end - mem_addr >= size) {
                cur->quote++;//引用+1
                cur->last = mem_addr + size;
                return mem_addr;
            }
            else {
                cur = cur->next;
            }
        }
        return mp_malloc_block(pool, size);// open new space
    }
}
void *mp_calloc(struct mp_pool_s *pool, size_t size) {
    void *mem_addr = mp_malloc(pool, size);
    if (mem_addr) {
        memset(mem_addr, 0, size);
    }
    return mem_addr;
}
//释放内存
void mp_free(struct mp_pool_s *pool, void *p) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {//大块
        if (p == large->alloc) {
            free(large->alloc);
            large->size = 0;
            large->alloc = NULL;
            return;
        }
    }
    //小块 引用-1
    struct mp_node_s *cur = NULL;
    for (cur = pool->head; cur; cur = cur->next) {
//        printf("cur:%p   p:%p   end:%p\n", (unsigned char *) cur, (unsigned char *) p, (unsigned char *) cur->end);
        if ((unsigned char *) cur <= (unsigned char *) p && (unsigned char *) p <= (unsigned char *) cur->end) {
            cur->quote--;
            if (cur->quote == 0) {
                if (cur == pool->head) {
                    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
                }
                else {
                    cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
                }
                cur->failed = 0;
                pool->current = pool->head;
            }
            return;
        }
    }
}
void monitor_mp_poll(struct mp_pool_s *pool, char *tk) {
    printf("\r\n\r\n------start monitor poll------%s\r\n\r\n", tk);
    struct mp_node_s *head = NULL;
    int i = 0;
    for (head = pool->head; head; head = head->next) {
        i++;
        if (pool->current == head) {
            printf("current==>第%d块\n", i);
        }
        if (i == 1) {
            printf("第%02d块small block  已使用:%4ld  剩余空间:%4ld  引用:%4d  failed:%4d\n", i,
                   (unsigned char *) head->last - (unsigned char *) pool,
                   head->end - head->last, head->quote, head->failed);
        }
        else {
            printf("第%02d块small block  已使用:%4ld  剩余空间:%4ld  引用:%4d  failed:%4d\n", i,
                   (unsigned char *) head->last - (unsigned char *) head,
                   head->end - head->last, head->quote, head->failed);
        }
    }
    struct mp_large_s *large;
    i = 0;
    for (large = pool->large; large; large = large->next) {
        i++;
        if (large->alloc != NULL) {
            printf("第%d块large block  size=%d\n", i, large->size);
        }
    }
    printf("\r\n\r\n------stop monitor poll------\r\n\r\n");
}
int main() {
    struct mp_pool_s *p = mp_create_pool(PAGE_SIZE);
    monitor_mp_poll(p, "create memory pool");
#if 0
    printf("mp_align(5, %d): %d, mp_align(17, %d): %d\n", MP_ALIGNMENT, mp_align(5, MP_ALIGNMENT), MP_ALIGNMENT,
           mp_align(17, MP_ALIGNMENT));
    printf("mp_align_ptr(p->current, %d): %p, p->current: %p\n", MP_ALIGNMENT, mp_align_ptr(p->current, MP_ALIGNMENT),
           p->current);
#endif
    void *mp[30];
    int i;
    for (i = 0; i < 30; i++) {
        mp[i] = mp_malloc(p, 512);
    }
    monitor_mp_poll(p, "申请512字节30个");
    for (i = 0; i < 30; i++) {
        mp_free(p, mp[i]);
    }
    monitor_mp_poll(p, "销毁512字节30个");
    int j;
    for (i = 0; i < 50; i++) {
        char *pp = mp_calloc(p, 32);
        for (j = 0; j < 32; j++) {
            if (pp[j]) {
                printf("calloc wrong\n");
                exit(-1);
            }
        }
    }
    monitor_mp_poll(p, "申请32字节50个");
    for (i = 0; i < 50; i++) {
        char *pp = mp_malloc(p, 3);
    }
    monitor_mp_poll(p, "申请3字节50个");
    void *pp[10];
    for (i = 0; i < 10; i++) {
        pp[i] = mp_malloc(p, 5120);
    }
    monitor_mp_poll(p, "申请大内存5120字节10个");
    for (i = 0; i < 10; i++) {
        mp_free(p, pp[i]);
    }
    monitor_mp_poll(p, "销毁大内存5120字节10个");
    mp_reset_pool(p);
    monitor_mp_poll(p, "reset pool");
    for (i = 0; i < 100; i++) {
        void *s = mp_malloc(p, 256);
    }
    monitor_mp_poll(p, "申请256字节100个");
    mp_destroy_pool(p);
    return 0;
}

nginx内存池对比分析

相关结构体定义对比

创建内存池对比

内存申请对比

目录
相关文章
|
安全 Java Maven
最小化 Java 镜像的常用技巧
随着容器技术的普及,越来越多的应用被容器化。人们使用容器的频率越来越高,但常常忽略一个基本但又非常重要的问题 - 容器镜像的体积。本文将介绍精简容器镜像的必要性并以基于 spring boot 的 java 应用为例描述最小化容器镜像的常用技巧。
4667 0
|
Unix 异构计算 Windows
带你读《基于CUDA的GPU并行程序开发指南》之一:CPU并行编程概述
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。
|
7月前
|
机器学习/深度学习 存储 人工智能
2025年NVIDIA RTX 4090云服务器租赁价格与选型指南
本文探讨了在主流云服务商尚未提供RTX 4090实例的背景下,如何选择高性能GPU服务器。分析了市场现状、替代方案性能,并推荐阿里云的GN7i(NVIDIA A10)、GN6v(NVIDIA V100)等实例,提供了成本优化策略与选型建议,确保用户在AI训练、图形渲染等场景中实现效率和成本的最佳平衡。
|
10月前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
315 1
|
JavaScript 区块链
vue 自定义网页图标 favicon.ico 和 网页标题
vue 自定义网页图标 favicon.ico 和 网页标题
423 1
|
10月前
|
前端开发 JavaScript 搜索推荐
前端小白也能学会的高大上技巧:如何让你的网页支持暗黑模式?
【10月更文挑战第30天】随着现代网页设计的发展,暗黑模式已成为一种流行趋势,提升了用户的阅读体验并增强了网页的适应性。本文介绍了如何通过简单的HTML、CSS和JavaScript实现网页的暗黑模式。首先,定义两种主题的CSS样式;然后,使用JavaScript实现模式切换逻辑,并自动检测系统主题。通过这些步骤,前端小白也能轻松掌握暗黑模式的实现,提升网页的用户体验和个性化水平。
587 4
|
数据采集 监控 数据挖掘
打造高效用户旅程:埋点分析系统的实操指南
在数字化时代,了解用户如何与我们的产品或服务互动是至关重要的。用户行为,在广义上,指的是用户在网站、应用程序或其他数字界面上的所有动作和反应。这些行为可能包括点击链接、浏览页面、填写表单,甚至是在社交媒体上分享内容。每一个动作都是用户体验的一部分,并对我们理解他们的需求和偏好提供了宝贵的线索。 在技术层面上,用户行为的跟踪和分析可以让我们深入了解用户的互动模式,从而指导我们的产品改进和市场战略。通过分析这些数据,我们可以发现用户旅程中的关键触点,识别用户体验的痛点,以及揭示潜在的优化机会。这不仅有助于提升用户满意度和忠诚度,还可以增强产品的市场竞争力。
打造高效用户旅程:埋点分析系统的实操指南
|
12月前
|
存储 运维 监控
超级好用的C++实用库之日志类
超级好用的C++实用库之日志类
162 0
|
Linux 调度 KVM
KVM详解(一)——KVM基础知识
KVM详解(一)——KVM基础知识
755 0
|
弹性计算 监控 关系型数据库
利器解读!Linux 内核调测中最最让开发者头疼的 bug 有解了|龙蜥技术
通过在Anolis 5.10 内核中增强 kfence 的功能,实现了一个线上的、精准的、可定制的内存调试解决方案。
利器解读!Linux 内核调测中最最让开发者头疼的 bug 有解了|龙蜥技术