socket编程之常用api介绍与socket、select、poll、epoll高并发服务器模型代码实现(3)

简介: 高并发服务器模型-pollpoll介绍  poll跟select类似, 监控多路IO, 但poll不能跨平台。其实poll就是把select三个文件描述符集合变成一个集合了。

高并发服务器模型-poll

poll介绍

  poll跟select类似, 监控多路IO, 但poll不能跨平台。其实poll就是把select三个文件描述符集合变成一个集合了。

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

参数说明:

  • fds: 传入传出参数, 实际上是一个结构体数组


fds.fd: 要监控的文件描述符
fds.events: 
  POLLIN---->读事件
  POLLOUT---->写事件
fds.revents: 返回的事件


  • nfds: 数组实际有效内容的个数
  • timeout: 超时时间, 单位是毫秒.


-1:永久阻塞, 直到监控的事件发生
0: 不管是否有事件发生, 立刻返回
>0: 直到监控的事件发生或者超时

返回值:


  • 成功:返回就绪事件的个数
  • 失败: 返回-1。若timeout=0, poll函数不阻塞,且没有事件发生, 此时返回-1, 并且errno=EAGAIN, 这种情况不应视为错误。


struct pollfd {
   int   fd;        /* file descriptor */   监控的文件描述符
   short events;     /* requested events */  要监控的事件---不会被修改
   short revents;    /* returned events */   返回发生变化的事件 ---由内核返回
};


说明:

  1. 当poll函数返回的时候, 结构体当中的fd和events没有发生变化, 究竟有没有事件发生由revents来判断, 所以poll是请求和返回分离
  2. struct pollfd结构体中的fd成员若赋值为-1, 则poll不会监控
  3. 相对于select, poll没有本质上的改变; 但是poll可以突破1024的限制.在/proc/sys/fs/file-max查看一个进程可以打开的socket描述符上限,如果需要可以修改配置文件: /etc/security/limits.conf,加入如下配置信息, 然后重启终端即可生效
* soft nofile 1024
* hard nofile 100000

soft和hard分别表示ulimit命令可以修改的最小限制和最大限制


poll代码实现

#include <errno.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/poll.h>
#include <sys/epoll.h>
#include <pthread.h>
#define MAX_LEN  4096
#define POLL_SIZE    1024
int main(int argc, char **argv) {
    int listenfd, connfd, n;
    struct sockaddr_in svr_addr;
    char buff[MAX_LEN];
    if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        printf("create socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    memset(&svr_addr, 0, sizeof(svr_addr));
    svr_addr.sin_family = AF_INET;
    svr_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    svr_addr.sin_port = htons(8081);
    if (bind(listenfd, (struct sockaddr *) &svr_addr, sizeof(svr_addr)) == -1) {
        printf("bind socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    if (listen(listenfd, 10) == -1) {
        printf("listen socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    //poll
    struct pollfd fds[POLL_SIZE] = {0};
    fds[0].fd = listenfd;
    fds[0].events = POLLIN;
    int max_fd = listenfd;
    int i = 0;
    for (i = 1; i < POLL_SIZE; i++) {
        fds[i].fd = -1;
    }
    while (1) {
        int nready = poll(fds, max_fd + 1, -1);
        if (fds[0].revents & POLLIN) {
            struct sockaddr_in client = {};
            socklen_t len = sizeof(client);
            if ((connfd = accept(listenfd, (struct sockaddr *) &client, &len)) == -1) {
                printf("accept socket error: %s(errno: %d)\n", strerror(errno), errno);
                return 0;
            }
            printf("accept \n");
            fds[connfd].fd = connfd;
            fds[connfd].events = POLLIN;
            if (connfd > max_fd) max_fd = connfd;
            if (--nready == 0) continue;
        }
        //int i = 0;
        for (i = listenfd + 1; i <= max_fd; i++) {
            if (fds[i].revents & POLLIN) {
                n = recv(i, buff, MAX_LEN, 0);
                if (n > 0) {
                    buff[n] = '\0';
                    printf("recv msg from client: %s\n", buff);
                    send(i, buff, n, 0);
                }
                else if (n == 0) { //
                    fds[i].fd = -1;
                    close(i);
                }
                if (--nready == 0) break;
            }
        }
    }
}

高并发服务器模型-epoll (重点)

epoll介绍

  将检测文件描述符的变化委托给内核去处理, 然后内核将发生变化的文件描述符对应的事件返回给应用程序。

  记住,epoll是事件驱动的,其底层数据结构是红黑树,红黑树的key是fd,val是事件,返回的是事件。

epoll有两种工作模式,ET和LT模式。

水平触发LT:


  • 高电平代表1
  • 只要缓冲区中有数据, 就一直通知


边缘触发ET:

电平有变化就代表1

缓冲区中有数据只会通知一次, 之后再有新的数据到来才会通知(若是读数据的时候没有读完, 则剩余的数据不会再通知, 直到有新的数据到来)

 epoll默认是水平触发LT,在需要高性能的场景下,可以改成边缘ET非阻塞方式来提高效率。


 一般使用LT是一次性读数据读不完,数据较多的情况。而一次性能够读完,小数据量则用边缘ET。


 ET模式由于只通知一次, 所以在读的时候要循环读, 直到读完, 但是当读完之后read就会阻塞, 所以应该将该文件描述符设置为非阻塞模式(fcntl函数)


 read函数在非阻塞模式下读的时候, 若返回-1, 且errno为EAGAIN, 则表示当前资源不可用, 也就是说缓冲区无数据(缓冲区的数据已经读完了); 或者当read返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲区中已没有数据可读了,也就可以认为此时读事件已处理完成。

epoll反应堆

  反应堆: 一个小事件触发一系列反应

 epoll反应堆的思想: c++的封装思想(把数据和操作封装到一起)

  • 将描述符,事件,对应的处理方法封装在一起
  • 当描述符对应的事件发生了, 自动调用处理方法(其实原理就是回调函数)


epoll反应堆的核心思想是: 在调用epoll_ctl函数的时候, 将events上树的时候,利用epoll_data_t的ptr成员, 将一个文件描述符,事件和回调函数封装成一个结构体, 然后让ptr指向这个结构体。然后调用epoll_wait函数返回的时候, 可以得到具体的events, 然后获得events结构体中的events.data.ptr指针, ptr指针指向的结构体中有回调函数, 最终可以调用这个回调函数。

struct epoll_event {
  uint32_t     events;      /* Epoll events */
  epoll_data_t data;        /* User data variable */
};
typedef union epoll_data {
  void        *ptr;
  int          fd;
  uint32_t     u32;
  uint64_t     u64;
} epoll_data_t;

epoll-api

int epoll_create(int size);


函数说明: 创建一个树根

参数说明:


  • size: 最大节点数, 此参数在linux 2.6.8已被忽略, 但必须传递一个大于0的数,历史意义,用epoll_create1也行。
  • 返回值:
成功: 返回一个大于0的文件描述符, 代表整个树的树根.
失败: 返回-1, 并设置errno值.
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);


函数说明: 将要监听的节点在epoll树上添加, 删除和修改

参数说明:


  • epfd: epoll树根
  • op:


EPOLL_CTL_ADD: 添加事件节点到树上
EPOLL_CTL_DEL: 从树上删除事件节点
EPOLL_CTL_MOD: 修改树上对应的事件节点


  • fd: 事件节点对应的文件描述符
  • event: 要操作的事件节点


struct epoll_event {
  uint32_t     events;      /* Epoll events */
  epoll_data_t data;        /* User data variable */
};
typedef union epoll_data {
  void        *ptr;
  int          fd;
  uint32_t     u32;
  uint64_t     u64;
} epoll_data_t;


  • event.fd: 要监控的事件对应的文件描述符


int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

函数说明:等待内核返回事件发生

参数说明:

  • epfd: epoll树根
  • events: 传出参数, 其实是一个事件结构体数组
  • maxevents: 数组大小
  • timeout:
  -1: 表示永久阻塞
  0: 立即返回
  >0: 表示超时等待事件
  • 成功: 返回发生事件的个数
  • 失败: 若timeout=0, 没有事件发生则返回; 返回-1, 设置errno值

epoll_wait的events是一个传出参数, 调用epoll_ctl传递给内核什么值, 当epoll_wait返回的时候, 内核就传回什么值,不会对struct event的结构体变量的值做任何修改。

epoll优缺点

epoll优点:


  1. 性能高,百万并发不在话下,而select就不行


epoll缺点:


  1. 不能跨平台,linux下的


epoll代码实现

#include <errno.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/poll.h>
#include <sys/epoll.h>
#include <pthread.h>
#define POLL_SIZE 1024
#define MAX_LEN  4096
int main(int argc, char **argv) {
    int listenfd, connfd, n;
    char buff[MAX_LEN];
    struct sockaddr_in svr_addr;
    memset(&svr_addr, 0, sizeof(svr_addr));
    svr_addr.sin_family = AF_INET;
    svr_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    svr_addr.sin_port = htons(8081);
    if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        printf("create socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    if (bind(listenfd, (struct sockaddr *) &svr_addr, sizeof(svr_addr)) == -1) {
        printf("bind socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    if (listen(listenfd, 10) == -1) {
        printf("listen socket error: %s(errno: %d)\n", strerror(errno), errno);
        return 0;
    }
    int epfd = epoll_create(1); //int size
    struct epoll_event events[POLL_SIZE] = {0};
    struct epoll_event ev;
    ev.events = EPOLLIN;
    ev.data.fd = listenfd;
    epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);
    while (1) {
        int nready = epoll_wait(epfd, events, POLL_SIZE, 5);
        if (nready == -1) {
            continue;
        }
        int i = 0;
        for (i = 0; i < nready; i++) {
            int actFd = events[i].data.fd;
            if (actFd == listenfd) {
                struct sockaddr_in cli_addr;
                socklen_t len = sizeof(cli_addr);
                if ((connfd = accept(listenfd, (struct sockaddr *) &cli_addr, &len)) == -1) {
                    printf("accept socket error: %s(errno: %d)\n", strerror(errno), errno);
                    return 0;
                }
                printf("accept\n");
                ev.events = EPOLLIN;
                ev.data.fd = connfd;
                epoll_ctl(epfd, EPOLL_CTL_ADD, connfd, &ev);
            }
            else if (events[i].events & EPOLLIN) {
                n = recv(actFd, buff, MAX_LEN, 0);
                if (n > 0) {
                    buff[n] = '\0';
                    printf("recv msg from client: %s\n", buff);
                    send(actFd, buff, n, 0);
                }
                else if (n == 0) { //
                    epoll_ctl(epfd, EPOLL_CTL_DEL, actFd, NULL);
                    close(actFd);
                }
            }
        }
    }
    return 0;
}

目录
相关文章
|
2月前
|
缓存 监控 Java
Java Socket编程最佳实践:优化客户端-服务器通信性能
【6月更文挑战第21天】Java Socket编程优化涉及识别性能瓶颈,如网络延迟和CPU计算。使用非阻塞I/O(NIO)和多路复用技术提升并发处理能力,减少线程上下文切换。缓存利用可减少I/O操作,异步I/O(AIO)进一步提高效率。持续监控系统性能是关键。通过实践这些策略,开发者能构建高效稳定的通信系统。
73 1
|
3月前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
2月前
|
Java 应用服务中间件 开发者
【实战指南】Java Socket编程:构建高效的客户端-服务器通信
【6月更文挑战第21天】Java Socket编程用于构建客户端-服务器通信。`Socket`和`ServerSocket`类分别处理两端的连接。实战案例展示了一个简单的聊天应用,服务器监听端口,接收客户端连接,并使用多线程处理每个客户端消息。客户端连接服务器,发送并接收消息。了解这些基础,加上错误处理和优化,能帮你开始构建高效网络应用。
189 10
|
2月前
|
IDE Java 开发工具
从零开始学Java Socket编程:客户端与服务器通信实战
【6月更文挑战第21天】Java Socket编程教程带你从零开始构建简单的客户端-服务器通信。安装JDK后,在命令行分别运行`SimpleServer`和`SimpleClient`。服务器监听端口,接收并回显客户端消息;客户端连接服务器,发送“Hello, Server!”并显示服务器响应。这是网络通信基础,为更复杂的网络应用打下基础。开始你的Socket编程之旅吧!
28 3
|
2月前
|
Java
Java Socket编程与多线程:提升客户端-服务器通信的并发性能
【6月更文挑战第21天】Java网络编程中,Socket结合多线程提升并发性能,服务器对每个客户端连接启动新线程处理,如示例所示,实现每个客户端的独立操作。多线程利用多核处理器能力,避免串行等待,提升响应速度。防止死锁需减少共享资源,统一锁定顺序,使用超时和重试策略。使用synchronized、ReentrantLock等维持数据一致性。多线程带来性能提升的同时,也伴随复杂性和挑战。
50 0
|
2月前
|
安全 Java 网络安全
Java Socket编程教程:构建安全可靠的客户端-服务器通信
【6月更文挑战第21天】构建安全的Java Socket通信涉及SSL/TLS加密、异常处理和重连策略。示例中,`SecureServer`使用SSLServerSocketFactory创建加密连接,而`ReliableClient`展示异常捕获与自动重连。理解安全意识,如防数据截获和中间人攻击,是首要步骤。通过良好的编程实践,确保网络应用在复杂环境中稳定且安全。
54 0
|
2月前
|
Java 数据安全/隐私保护
深入剖析:Java Socket编程原理及客户端-服务器通信机制
【6月更文挑战第21天】Java Socket编程用于构建网络通信,如在线聊天室。服务器通过`ServerSocket`监听,接收客户端`Socket`连接请求。客户端使用`Socket`连接服务器,双方通过`PrintWriter`和`BufferedReader`交换数据。案例展示了服务器如何处理每个新连接并广播消息,以及客户端如何发送和接收消息。此基础为理解更复杂的网络应用奠定了基础。
37 13
|
29天前
|
算法 Java 调度
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
|
29天前
|
缓存 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
|
2月前
|
Java Android开发
Java Socket编程示例:服务器开启在8080端口监听,接收客户端连接并打印消息。
【6月更文挑战第23天】 Java Socket编程示例:服务器开启在8080端口监听,接收客户端连接并打印消息。客户端连接服务器,发送&quot;Hello, Server!&quot;后关闭。注意Android中需避免主线程进行网络操作。
57 4