Mixtral 8X7B MoE模型基于阿里云人工智能平台PAI实践合集

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本文介绍如何在PAI平台针对Mixtral 8x7B大模型的微调和推理服务的最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。

1.背景


Mixtral 8x7B大模型是Mixtral AI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral 8x7B模型与Llama2 70B和GPT-3.5表现相当,因此具有很高的使用性价比。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文介绍如何在PAI平台针对Mixtral 8x7B大模型的微调和推理服务的最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。


2.使用PAI-DSW轻量化微调Mixtral 8x7B MOE大模型


PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。我们在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中上线了两个微调Mixtral 8x7B MOE大模型的示例,参见下图:

image.png

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。


3.使用Swift轻量化微调Mixtral 8x7B MOE大模型


Swift是魔搭ModelScope开源社区推出的轻量级训练推理工具开源库,使用Swift进行这一大模型LoRA轻量化微调需要使用2张GU108(80G)及以上资源。在安装完对应依赖后,我们首先下载模型至本地:

!apt-getupdate!echoy|apt-getinstallaria2defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
mixtral_url="http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/mixtral/Mixtral-8x7B-Instruct-v0.1.tar"aria2(mixtral_url, mixtral_url.split("/")[-1], "/root/")
!cd/root&&mkdir-pAI-ModelScope!cd/root&&tar-xfMixtral-8x7B-Instruct-v0.1.tar-C/root/AI-ModelScopeimportosos.environ['MODELSCOPE_CACHE']='/root'

当模型下载完毕后,我们使用Swift一键拉起训练任务:

!cdswift/examples/pytorch/llm&&PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
pythonllm_sft.py \
--model_id_or_pathAI-ModelScope/Mixtral-8x7B-Instruct-v0.1 \
--model_revisionmaster \
--sft_typelora \
--tuner_backendswift \
--dtypeAUTO \
--output_dir/root/output \
--ddp_backendnccl \
--datasetalpaca-zh \
--train_dataset_sample100 \
--num_train_epochs2 \
--max_length2048 \
--check_dataset_strategywarning \
--lora_rank8 \
--lora_alpha32 \
--lora_dropout_p0.05 \
--lora_target_modulesALL \
--batch_size1 \
--weight_decay0.01 \
--learning_rate1e-4 \
--gradient_accumulation_steps16 \
--max_grad_norm0.5 \
--warmup_ratio0.03 \
--eval_steps300 \
--save_steps300 \
--save_total_limit2 \
--logging_steps10 \
--only_save_modeltrue \
--gradient_checkpointingfalse

模型训练完成后,我们将学习到的LoRA权重合并到模型Checkpoint中:

!swiftmerge-lora--ckpt_dir'/root/output/mistral-7b-moe-instruct/v3-20231215-111107/checkpoint-12'

其中,ckpt_dir参数的值需要替换成模型LoRA权重保存路径。为了测试模型训练的正确性,我们可以使用transformers库进行离线推理测试:

fromtransformersimportAutoModelForCausalLM, AutoTokenizermodel_id="/root/output/mistral-7b-moe-instruct/v3-20231215-111107/checkpoint-12-merged"tokenizer=AutoTokenizer.from_pretrained(model_id, device_map='auto')
model=AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
text="""[INST] <<SYS>>You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.<</SYS>>写一首歌的过程从开始到结束。 [/INST]"""inputs=tokenizer(text, return_tensors="pt")
outputs=model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))


4.使用Deepspeed轻量化微调Mixtral 8x7B MOE大模型


我们也可以使用Deepspeed对Mixtral 8x7B MOE大模型进行LoRA轻量化微调。同样的,我们需要使用2张GU108(80G)及以上资源。我们首先下载模型至本地:

!apt-getupdate!echoy|apt-getinstallaria2defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
mixtral_url="http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/mixtral/Mixtral-8x7B-Instruct-v0.1.tar"aria2(mixtral_url, mixtral_url.split("/")[-1], "/root/")
!cd/root&&tar-xfMixtral-8x7B-Instruct-v0.1.tar

第二步,我们下载一个示例古诗生成数据集,用户可以根据下述数据格式准备自己的数据集。

!wget-chttps://pai-quickstart-predeploy-hangzhou.oss-cn-hangzhou.aliyuncs.com/huggingface/datasets/llm_instruct/en_poetry_train_mixtral.json!wget-chttps://pai-quickstart-predeploy-hangzhou.oss-cn-hangzhou.aliyuncs.com/huggingface/datasets/llm_instruct/en_poetry_test_mixtral.json

第三步,我们可以修改示例命令的超参数,并且拉起训练任务。

!mkdir-p/root/output!deepspeed/ml/code/train_sft.py \
--model_name_or_path/root/Mixtral-8x7B-Instruct-v0.1/ \
--train_pathen_poetry_train_mixtral.json \
--valid_pathen_poetry_test_mixtral.json \
--learning_rate1e-5 \
--lora_dim32 \
--max_seq_len256 \
--modelmixtral \
--num_train_epochs1 \
--per_device_train_batch_size8 \
--zero_stage3 \
--gradient_checkpointing \
--print_loss \
--deepspeed \
--output_dir/root/output/ \
--offload

当训练结束后,我们拷贝额外配置文件至输出文件夹:

!cp/root/Mixtral-8x7B-Instruct-v0.1/generation_config.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/special_tokens_map.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer.model/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer_config.json/root/output

我们同样可以使用transformers库进行离线推理测试:

importosfromtransformersimportAutoModelForCausalLM, AutoTokenizerimporttorchmodel_id="/root/output/"tokenizer=AutoTokenizer.from_pretrained(model_id)
model=AutoModelForCausalLM.from_pretrained(model_id,device_map='auto',torch_dtype=torch.float16)
text="""[INST] Write a poem on a topic 'Care for Thy Soul as Thing of Greatest Price': [/INST]"""inputs=tokenizer(text, return_tensors="pt").to('cuda')
outputs=model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

如果用户需要将上述模型部署为EAS服务,需要将格式转换成safetensors格式:

state_dict=model.state_dict()
model.save_pretrained(
model_id,
state_dict=state_dict,
safe_serialization=True)


5.使用PAI-EAS在线部署Mixtral 8x7B MOE大模型


PAI-EAS是PAI平台推出的弹性推理服务,可以将各种大模型部署为在线服务。当Mixtral 8x7B MOE大模型微调完毕后,我们可以将其部署为PAI-EAS服务。这里,我们介绍使用PAI-SDK将上述模型进行部署。首先,我们在PAI-DSW环境安装PAI-SDK:

!python-mpipinstallalipai--upgrade

在安装完成后,在在命令行终端上执行以下命令,按照引导完成配置AccessKey、PAI工作空间以及 OSS Bucket:

python-mpai.toolkit.config

我们将训练好的模型上传至OSS Bucket。在下述命令中,source_path为模型Checkpoint保存的本地路径,oss_path为上传至OSS的目标路径:

importpaifrompai.sessionimportget_default_sessionfrompai.common.oss_utilsimportuploadprint(pai.__version__)
sess=get_default_session()
# 上传模型到默认的Bucketmodel_uri=upload(
source_path="/root/output", 
oss_path="mixtral-7b-moe-instruct-sft-ds")
print(model_uri)

PAI 提供了Mixtral 8X7B MOE 模型部署镜像和部署代码,用户可以通过相应的部署配置,将微调后的模型部署到PAI-EAS。

frompai.modelimportRegisteredModelfrompai.predictorimportPredictor# 获取PAI提供的Mixtral模型服务配置(目前仅支持乌兰察布)inference_spec=RegisteredModel(
"Mixtral-8x7B-Instruct-v0.1",
model_provider="pai",
).inference_spec# 修改部署配置,使用微调后的模型infer_spec.mount(model_uri, model_path="/ml/model")
# 部署推理服务服务m=Model(inference_spec=infer_spec)
predictor: Predictor=m.deploy(
service_name='mixtral_sdk_example_ds',
options={
"metadata.quota_id": "<ResourceGroupQuotaId>",
"metadata.quota_type": "Lingjun",
"metadata.workspace_id": session.workspace_id    }
)
# 查看服务的Endpoint和Tokenendpoint=predictor.internet_endpointtoken=predictor.access_token

以上配置项中,metadata.quota_id是用户购买的灵骏资源配额ID,在购买了灵骏资源之后,用户可以从PAI控制台页面的资源配额入口获取相应的信息。

部署的推理服务支持 OpenAI 的 API 风格进行调用,通过推理服务的详情页,用户可以获得服务访问地址(Endpoint)和访问凭证(Token)。使用 cURL 调用推理服务的示例如下:

# 请注意替换为使用服务的Endpoint和TokenexportAPI_ENDPOINT="<ENDPOINT>"exportAPI_TOKEN="<TOKEN>"# 查看模型listcurl$API_ENDPOINT/v1/models \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN"# 调用通用的文本生成APIcurl$API_ENDPOINT/v1/completions \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN" \
-d'{"model": "Mixtral-8x7B-Instruct-v0.1",
"prompt": "San Francisco is a",
"max_tokens": 256,
"temperature": 0}'curl$API_ENDPOINT/v1/chat/completions \
-H"Authorization: Bearer $API_TOKEN" \
-H"Content-Type: application/json" \
-d'{"model": "Mixtral-8x7B-Instruct-v0.1",
"messages": [
          {"role": "user", "content": "介绍一下上海的历史"}
        ]
}'


6.使用PAI-QuickStart微调和部署Mixtral 8x7B MOE大模型


快速开始(PAI-QuickStart)集成了国内外AI开源社区中优质的预训练模型,支持零代码或是SDK的方式实现微调和部署Mixtral 8x7B MOE大模型,用户只需要格式准备训练集和验证集,填写训练时候使用的超参数就可以一键拉起训练任务。Mixtral的模型卡片如下图所示:

image.png

我们可以根据实际需求上传训练集和验证集,调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

点击“训练”按钮,PAI-QuickStart开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

如果需要将模型部署至PAI-EAS,可以在同一页面的模型部署卡面选择资源组,并且点击“部署”按钮实现一键部署。模型调用方式和上文PAI-EAS调用方式相同。

image.png


7.相关资料


阿里云人工智能平台PAI

交互式建模PAI-DSW

模型在线服务PAI-EAS

PAI 快速开始

PAI Python SDK

阿里云PAI灵骏智算服务

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
21天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
292 109
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
170 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
449 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
411 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
797 0
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
1634 0
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【2月更文挑战第20天】 在数据科学与人工智能的领域中,支持向量机(SVM)是一种强大的监督学习算法,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将深入探讨SVM的核心概念、工作原理以及实际应用案例。我们将透过算法的数学原理,揭示如何利用SVM进行有效的数据分类与回归分析,并讨论其在处理非线性问题时的优势。通过本文,读者将对SVM有更深层次的理解,并能够在实践中应用这一算法解决复杂的数据问题。
257 0

相关产品

  • 人工智能平台 PAI