elk stack部署自动化日志收集分析平台

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
日志服务 SLS,月写入数据量 50GB 1个月
简介: elk stack部署自动化日志收集分析平台

流程说明


  • 应用APP生产日志,用来记录用户的操作
  • 通过Filebeat读取日志文件中的内容,并且将内容发送给Logstash,原因是需要对内容做处理
  • Logstash接收到内容后,进行处理,如分割操作,然后将内容发送到Elasticsearch中
  • Kibana会读取Elasticsearch中的数据,并且在Kibana中进行设计Dashboard,最后进行展示


Docker 部署 elk

先决条件

修改系统内存内核参数

vim /etc/sysctl.conf
vm.max_map_count=262144

运行内存要大于4G


pull + run

docker pull sebp/elk
docker run -p 5601:5601 -p 9200:9200 -p 5044:5044 -itd --name elk sebp/elk

修改logstash配置文件

 1、进入elk容器
docker exec -it elk /bin/bash
 2、修改配置文件 改为如下
vi /etc/logstash/conf.d/02-beats-input.conf

这里的logstash接收到filebeat发来的日志,将message切割等数据处理操作,之后再将处理好的数据发送给elasticsearch

input {
        beats {
                port => "5044"
        }
}
filter {
        mutate {
                split => {"message"=>"|"}
        }
        mutate {
                add_field => {
                "userId" => "%{[message][1]}"
                "visit" => "%{[message][2]}"
                "date" => "%{[message][3]}"
                }
        }
        mutate {
                convert => {
                "userId" => "integer"
                "visit" => "string"
                "date" => "string"
                }
        }
}
output {
  elasticsearch {
    hosts => [ "192.168.135.10:9200"]
    index => ["logstash-wxf-demo-shopping"]
  }
}

仅保留02-beats-input.conf,别的要么改名要么删除,我这里是改名

root@6643ff42f735:/etc/logstash/conf.d# ls
02-beats-input.conf  10-syslog.conf.bak  11-nginx.conf.bak  30-output.conf.bak

退出容器

exit


开启服务

编写服务

我这里用go编写的一个程序模拟

package main
import (
  "fmt"
  "math/rand"
  "os"
  "strconv"
  "time"
)
func main() {
  for i := 0; i < 5; i++ {
    go LogCal()
    time.Sleep(time.Second)
  }
  select {}
}
func LogCal() {
  for {
    businessList := []string{"浏览页面", "评论商品", "加入收藏", "加入购物车", "提交订单", "使用优惠券", "领取优惠券", "搜索", "查看订单"}
    t := time.Now()
    rand.Seed(time.Now().UnixNano())
    userId := rand.Intn(9000000) + 1000000
    visit := businessList[rand.Intn(9)]
    date := fmt.Sprintf("%d-%d-%d %d:%d:%d", t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second())
    time.Sleep(time.Second * time.Duration(rand.Intn(5)+5))
    result := "DAU|" + strconv.Itoa(userId) + "|" + visit + "|" + date + "\n"
    LogInfo(result)
  }
}
func LogInfo(result string) {
  t := time.Now()
  orderTime := fmt.Sprintf("%d-%d-%d %d:%d:%d", t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second())
  pre := "[INFO] " + orderTime + " [Demo] - "
  result = pre + result
  filePath := "/usr/local/Demo/abc.log"
  file, err := os.OpenFile(filePath, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0666)
  if err != nil {
    fmt.Printf("open file err=%v\n", err)
    return
  }
  defer file.Close()
  file.WriteString(result)
}

配置filebeat的yml文件

vi Demo.yml


填写如下内容,将收集到的日志发送给logstash

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /usr/local/Demo/*.log
  fields:
    form: Demo-Shopping
  fields_under_root: true
setup.template.settings:
  index.number_of_shards: 1
  index.number_of_replica: 0
output.logstash:
  hosts: ["192.168.135.10:5044"]

运行顺序

docker restart elk
go run main.go
./filebeat -e -c Demo.yml


进入Elasticsearch-head查看数据

没有Elasticsearch-head去下载这个插件即可

可以看到我们想要的date,visit,userid都收集到了


进入Kibana创建数据看板

http://192.168.135.10:5601/

创建索引



创建柱形图

下面那个,上面的是饼图


选择数据源



创建饼图

选择数据源



右上角Save

创建数据表格


右上角Save

制作Dashboard仪表盘



最后保存即可

效果展示



相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
人工智能 Ubuntu 前端开发
Dify部署全栈指南:AI从Ubuntu配置到HTTPS自动化的10倍秘籍
本文档介绍如何部署Dify后端服务及前端界面,涵盖系统环境要求、依赖安装、代码拉取、环境变量配置、服务启动、数据库管理及常见问题解决方案,适用于开发与生产环境部署。
652 1
|
2月前
|
弹性计算 Devops Shell
用阿里云 DevOps Flow 实现 ECS 部署自动化:从准备到落地的完整指南
阿里云 DevOps Flow 是一款助力开发者实现自动化部署的高效工具,支持代码流水线构建、测试与部署至ECS实例,显著提升交付效率与稳定性。本文详解如何通过 Flow 自动部署 Bash 脚本至 ECS,涵盖环境准备、流水线搭建、源码接入、部署流程设计及结果验证,助你快速上手云上自动化运维。
231 0
|
2月前
|
消息中间件 Java Kafka
搭建ELK日志收集,保姆级教程
本文介绍了分布式日志采集的背景及ELK与Kafka的整合应用。传统多服务器环境下,日志查询效率低下,因此需要集中化日志管理。ELK(Elasticsearch、Logstash、Kibana)应运而生,但单独使用ELK在性能上存在瓶颈,故结合Kafka实现高效的日志采集与处理。文章还详细讲解了基于Docker Compose构建ELK+Kafka环境的方法、验证步骤,以及如何在Spring Boot项目中整合ELK+Kafka,并通过Logback配置实现日志的采集与展示。
717 64
搭建ELK日志收集,保姆级教程
|
3月前
|
运维 Prometheus 监控
3 年部署经验总结:用自动化工具轻松管理 300+ 服务器开源软件
三年前接手公司IT部门时,我满怀信心,却发现部署效率低下。尽管使用了GitLab、Jenkins、Zabbix等100+开源工具,部署仍耗时费力。文档厚重如百科,却难解实际困境。一次凌晨三点的加班让我下定决心改变现状。偶然看到一篇国外博客,介绍了自动化部署的高效方式,我深受启发。
186 0
|
5月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
645 1
|
1月前
|
弹性计算 人工智能 前端开发
在阿里云ECS上部署n8n自动化工作流:U2实例实战
本文介绍如何在阿里云ECS的u2i/u2a实例上部署开源工作流自动化平台n8n,利用Docker快速搭建并配置定时任务,实现如每日抓取MuleRun新AI Agent并推送通知等自动化流程。内容涵盖环境准备、安全组设置、实战案例与优化建议,助力高效构建低维护成本的自动化系统。
369 5
|
2月前
|
jenkins Java 持续交付
使用 Jenkins 和 Spring Cloud 自动化微服务部署
随着单体应用逐渐被微服务架构取代,企业对快速发布、可扩展性和高可用性的需求日益增长。Jenkins 作为领先的持续集成与部署工具,结合 Spring Cloud 提供的云原生解决方案,能够有效简化微服务的开发、测试与部署流程。本文介绍了如何通过 Jenkins 实现微服务的自动化构建与部署,并结合 Spring Cloud 的配置管理、服务发现等功能,打造高效、稳定的微服务交付流程。
395 0
使用 Jenkins 和 Spring Cloud 自动化微服务部署
|
4月前
|
运维 监控 持续交付
还在为部署开源工具烦恼?自动化部署工具 Websoft9一键部署 300+ 开源应用
在数字化时代,开源工具因免费、灵活、可定制等特性广受欢迎,但其部署过程却常因环境配置复杂、依赖繁琐、耗时长等问题令人头疼。本文介绍了传统部署的三大难点,并提出两种解决方案:传统手动部署与集成化控制台部署。
还在为部署开源工具烦恼?自动化部署工具 Websoft9一键部署 300+ 开源应用
|
5月前
|
人工智能 搜索推荐 测试技术
通义灵码 Agent+MCP:打造自动化菜品推荐平台,从需求到部署实现全流程创新
通过通义灵码编程智能体模式和 MCP 的集成,开发者可以高效构建在线菜品推荐网站。智能体模式大幅提升了开发效率,MCP 服务则为功能扩展提供了无限可能。