【Hello AI】神龙AI加速引擎AIACC-加速深度学习应用

简介: 神龙AI加速引擎AIACC是基于阿里云IaaS资源推出的AI加速引擎,用于优化基于AI主流计算框架搭建的模型,使用AIACC可加速深度学习应用,能显著提升模型的训练和推理性能。

神龙AI加速引擎AIACC是基于阿里云IaaS资源推出的AI加速引擎,用于优化基于AI主流计算框架搭建的模型,使用AIACC可加速深度学习应用,能显著提升模型的训练和推理性能。同时配合资源管理工具FastGPU快速构建AI计算任务,可以全面提升研发效率。接下来让我们一起更全面的了解阿里云——神龙AI加速引擎AIACC。


一、如何使用AIACC加速深度学习应用

神龙AI加速引擎AIACC包括AIACC-Training(AIACC训练加速)和AIACC-Inference(AIACC推理加速)两部分。通过AIACC加速深度学习应用时,基础架构图如下所示:


框架层

说明

资源层

(阿里云IaaS资源)

在资源层使用阿里云IaaS资源,按需开启,满足大规模GPU集群的计算、存储、网络资源的弹性需求。

调度层

(神龙AI加速资源管理)

在调度层使用FastGPU构建AI计算任务并管理大规模GPU集群相关的资源。更多信息,请参见什么是集群极速部署工具FastGPU

框架层

(神龙AI加速引擎)

在框架层使用AIACC实现多框架统一加速。AIACC主要利用了基于通信的性能优化技术,分布式训练时需要在各机器之间、GPU卡之间交换数据,需要做到高效的数据通信才能保证加速效果。更多信息,请参见神龙AI训练加速引擎AIACC-Training(AIACC训练加速)神龙AI推理加速引擎AIACC-Inference(AIACC推理加速)

应用层

(神龙AI加速参考解决方案)

在应用层实现针对各种应用场景的深度学习应用,覆盖图像识别、目标检测、视频识别、CTR预估、自然语言理解、语音识别等常见场景。由于在框架层使用AIACC实现多框架统一加速,您只需调整少量代码即可大幅提升应用性能。


二、产品优势

使用AIACC加速深度学习应用具有以下优势:

  • 基于阿里云IaaS资源,资源易用性和稳定性有保障。
  • 配合FastGPU一键构建任务,缩短创建和配置资源的时间并提高GPU资源利用率,大幅降低成本。
  • 支持多框架统一加速,显著提升训练和推理性能,且适配工作量较小。
  • 采用AI算法研发时,验证周期更短,模型迭代速度更快,从而大幅提升研发效率。


三、神龙AI训练加速引擎——AIACC-Training(AIACC训练加速)

AIACC-Training(原Ali-perseus、Perseus-Training)是阿里云神龙计算加速团队基于阿里云IaaS资源层研发和维护的高效人工智能分布式训练加速组件,旨在实现开源兼容以及无感地加速您的分布式训练任务。

  1. AIACC-Training(AIACC训练加速)的框架图如下所示:


框架层

说明

AI主流计算框架

AI主流计算框架包括TensorFlow、PyTorch、MxNet和Caffe。AIACC-Training支持对基于AI主流计算框架搭建的模型进行分布式训练和任务加速。

接口层

接口层主要包括统一通信接口类、统一基础组件类、统一基础通信类以及统一梯度入口层,该层提供了与AIACC-Training系统进行交互和通信的统一接口和组件。AIACC-Training兼容了PyTorch DDP和Horovod的API,对于原生的分布式训练实现了无感的性能加速。

底层加速层

底层加速层通常使用高性能分布式通信库统一实现模型的性能优化,与梯度协商优化、梯度融合优化、梯度压缩优化以及通信操作优化配合使用。针对阿里云网络基础设施和AI数据并行分布式训练的特性,AIACC-Training的优化带来了显著的性能提升。

  1. AIACC-Training(AIACC训练加速)支持的加速特性包括但不限于:
  • 梯度融合通信支持自适应多流、自适应梯度融合,显著提升带宽密集的网络模型的训练性能,提速50%~300%。
  • 采用高度优化的在线/离线梯度协商机制,将大规模节点下梯度协商的开销降低一到两个数量级。
  • 采用分级的Allreduce方法,支持FP16梯度压缩及混合精度压缩。
  • 支持Gossip风格梯度压缩技术。
  • 支持Multistep梯度通信优化。
  • 提供针对RDMA/eRDMA网络的深度优化。
  • 提供针对MXNet的API扩展,支持InsightFace类型的数据+模型并行,以及SyncBN Operator增强。
  • 支持GroupComm的分组通信算子,能够快速构建数据+模型并行的复杂通信组合训练。

AIACC-Training(AIACC训练加速)的训练速度与训练成本具有显著优势。更多详细测试数据,请参见Stanford DAWNBench

  1. 典型分布式训练的优化案例如下表所示:

客户

模型

框架

规模(GPU张数)

训练速度提升

某智能芯片厂商

图像分类

MXNet

256

100%

某智能芯片厂商

人脸识别

MXNet

256

200%

某汽车厂商

FaceNet

PyTorch

32

100%

某手机厂商

BERT

TensorFlow

32

30%

某手机厂商

GPT2

PyTorch

32

30%

某人工智能厂商

Faster-RCNN

MXNet、hvd、byteps

128

30%

某人工智能厂商

InsightFace

MXNet、hvd、byteps

128

200%

某在线教育

ESPnet

PyTorch-DP

16

30%

某在线教育

ESPnet2

PyTorch-DDP

16

30%

某在线教育

CTR

PyTorch

32

80%

某在线教育

OCR

PyTorch

32

30%

某手机厂商

图像分类

PyTorch

128

25%

某手机厂商

MAE

PyTorch

32

30%

某研究院

GPT2

PyTorch+Megatron

32

30%

某社交媒体

MMDetection2

PyTorch

32

30%

某金融智能

InsightFace

PyTorch

32

50%

某手机厂商

Detection2

PyTorch

64

25%

某视觉团队

insightface

MXNet

64

50%

某游戏厂商

ResNet

PyTorch

32

30%

某城市大脑

InsightFace

MXNet

16

42%

某制药科技

Autoencoder

PyTorch

32

30%

某自动驾驶

swin-transformer

PyTorch

32

70%

  1. 关于如何安装和使用AIACC-Training(AIACC训练加速),请参见:


四、神龙AI推理加速引擎——AIACC-Inference(AIACC推理加速)

AIACC-Inference(AIACC推理加速)的推理速度与推理成本具有显著优势。更多详细测试数据,请参见Stanford DAWNBench

AIACC-Inference(AIACC推理加速)支持的加速特性:高性能算子加速库会在自研高性能算子和NVIDIA算子中找到最优算子,并生成高性能算子列表供加速引擎进行子图分割和传递。

关于如何安装和使用AIACC-Inference(AIACC推理加速),请参见:


好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
5天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
34 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
17 4
|
1天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
3天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
|
4天前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们还将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。
|
3天前
|
机器学习/深度学习 数据采集 边缘计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习在图像识别领域的应用,并分析了当前面临的主要挑战。通过具体案例和数据分析,展示了深度学习技术如何推动图像识别的边界,同时指出了数据质量、模型泛化能力及计算资源等方面的限制因素。文章旨在为研究人员和从业者提供一个关于深度学习在图像识别中应用现状与未来发展方向的全面视角。
|
4天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
下一篇
无影云桌面