数据结构(数组、链表、栈、队列、树)(一)

简介: 数据结构(数组、链表、栈、队列、树)

1.数组

1.1数组的特点

在Java中,数组是用来存放同一种数据类型的集合,并且只能存放同一种数据类型。

//只声明了类型和长度
数据类型[]  数组名称 = new 数据类型[数组长度];
//声明了类型,初始化赋值,大小由元素个数决定
数据类型[] 数组名称 = {数组元素1,数组元素2,......}

例如:整型数组

例如:对象数组

  • 物理结构特点:
  • 申请内存:一次申请一大段连续的空间,一旦申请到了,内存就固定了。
  • 不能动态扩展(初始化给大了,浪费;给小了,不够用),插入快,删除和查找慢。
  • 存储特点:所有数据存储在这个连续的空间中,数组中的每一个元素都是一个具体的数据(或对象),所有数据都紧密排布,不能有间隔。
  • 如下图:

1.2自定义数组

class Array {
    private Object[] elementData;
    private int size;
    public Array(int capacity){
        elementData = new Object[capacity];
    }
    /**
     * 添加元素
     * @param value
     */
    public void add(Object value){
        if(size >= elementData.length){
            throw new RuntimeException("数组已满,不可添加");
        }
        elementData[size] = value;
        size++;
    }
    /**
     * 查询元素value在数组中的索引位置
     * @param value
     * @return
     */
    public int find(Object value){
        for (int i = 0; i < size; i++) {
            if(elementData[i].equals(value)){
                return i;
            }
        }
        return -1;
    }
    /**
     * 从当前数组中移除首次出现的value元素
     * @param value
     * @return
     */
    public boolean delete(Object value){
        int index = find(value);
        if(index == -1){
            return false;
        }
        for(int i = index;i < size - 1;i++){
            elementData[i] = elementData[i + 1];
        }
        elementData[size - 1] = null;
        size--;
        return true;
    }
    /**
     * 将数组中首次出现的oldValue替换为newValue
     * @param oldValue
     * @param newValue
     * @return
     */
    public boolean update(Object oldValue,Object newValue){
        int index = find(oldValue);
        if(index == -1){
            return false;
        }
        elementData[index] = newValue;
        return true;
    }
    /**
     * 遍历数组中所有数据
     */
    public void print(){
        System.out.print("{");
        for (int i = 0; i < size; i++) {
            if(i == size - 1){
                System.out.println(elementData[i] + "}");
                break;
            }
            System.out.print(elementData[i] + ",");
        }
    }
}
//测试类
public class ArrayTest {
    public static void main(String[] args) {
        Array arr = new Array(10);
        arr.add(123);
        arr.add("AA");
        arr.add(345);
        arr.add(345);
        arr.add("BB");
        arr.delete(345);
        arr.update(345,444);
        arr.print();
    }
}

2.链表

2.1链表的特点

  • 逻辑结构:线性结构
  • 物理结构:不要求连续的存储空间
  • 存储特点:链表由一系列结点node(链表中每一个元素称为结点)组成,结点可以在代码执行过程中动态创建。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

  • 常见的链表结构有如下的形式:

2.2自定义链表

2.2.1自定义单向链表

/*
单链表中的节点。
节点是单向链表中基本的单元。
每一个节点Node都有两个属性:
    一个属性:是存储的数据。
    另一个属性:是下一个节点的内存地址。
 */
public class Node {
    // 存储的数据
    Object data;
    // 下一个节点的内存地址
    Node next;
    public Node(){
    }
    public Node(Object data, Node next){
        this.data = data;
        this.next = next;
    }
}
/*
链表类(单向链表)
 */
public class Link<E> {
    // 头节点
    Node header;
    private int size = 0;
    public int size(){
        return size;
    }
    // 向链表中添加元素的方法(向末尾添加)
    public void add(E data){
    //public void add(Object data){
        // 创建一个新的节点对象
        // 让之前单链表的末尾节点next指向新节点对象。
        // 有可能这个元素是第一个,也可能是第二个,也可能是第三个。
        if(header == null){
            // 说明还没有节点。
            // new一个新的节点对象,作为头节点对象。
            // 这个时候的头节点既是一个头节点,又是一个末尾节点。
            header = new Node(data, null);
        }else {
            // 说明头不是空!
            // 头节点已经存在了!
            // 找出当前末尾节点,让当前末尾节点的next是新节点。
            Node currentLastNode = findLast(header);
            currentLastNode.next = new Node(data, null);
        }
        size++;
    }
    /**
     * 专门查找末尾节点的方法。
     */
    private Node findLast(Node node) {
        if(node.next == null) {
            // 如果一个节点的next是null
            // 说明这个节点就是末尾节点。
            return node;
        }
        // 程序能够到这里说明:node不是末尾节点。
        return findLast(node.next); // 递归算法!
    }
    /*// 删除链表中某个数据的方法
    public void remove(Object obj){
        //略
    }
    // 修改链表中某个数据的方法
    public void modify(Object newObj){
        //略
    }
    // 查找链表中某个元素的方法。
    public int find(Object obj){
        //略
    }*/
}
2.2.2自定义双向链表

/*
双向链表中的节点。
 */
public class Node<E> {
    Node prev;
    E data;
    Node next;
    Node(Node prev, E data, Node next) {
        this.prev = prev;
        this.data = data;
        this.next = next;
    }
}
public class MyLinkedList<E> implements Iterable<E>{
    private Node first;  //链表的首元素
    private Node last;   //链表的尾元素
    private int total;
    public void add(E e){
        Node newNode = new Node(last, e, null);
        if(first == null){
            first = newNode;
        }else{
            last.next = newNode;
        }
        last = newNode;
        total++;
    }
    public int size(){
        return total;
    }
    public void delete(Object obj){
        Node find = findNode(obj);
        if(find != null){
            if(find.prev != null){
                find.prev.next = find.next;
            }else{
                first = find.next;
            }
            if(find.next != null){
                find.next.prev = find.prev;
            }else{
                last = find.prev;
            }
            find.prev = null;
            find.next = null;
            find.data = null;
            total--;
        }
    }
    private Node findNode(Object obj){
        Node node = first;
        Node find = null;
        if(obj == null){
            while(node != null){
                if(node.data == null){
                    find = node;
                    break;
                }
                node = node.next;
            }
        }else{
            while(node != null){
                if(obj.equals(node.data)){
                    find = node;
                    break;
                }
                node = node.next;
            }
        }
        return find;
    }
    public boolean contains(Object obj){
        return findNode(obj) != null;
    }
    public void update(E old, E value){
        Node find = findNode(old);
        if(find != null){
            find.data = value;
        }
    }
    @Override
    public Iterator<E> iterator() {
        return new Itr();
    }
    private class Itr implements Iterator<E>{
        private Node<E> node = first;
        @Override
        public boolean hasNext() {
            return node!=null;
        }
        @Override
        public E next() {
            E value = node.data;
            node = node.next;
            return value;
        }
    }
}

自定义双链表测试:

public class MyLinkedListTest {
    public static void main(String[] args) {
        MyLinkedList<String> my = new MyLinkedList<>();
        my.add("hello");
        my.add("world");
        my.add(null);
        my.add(null);
        my.add("java");
        my.add("java");
        my.add("xiaoyang");
        System.out.println("一共有:" + my.size());
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
        System.out.println("-------------------------------------");
        System.out.println("查找java,null,haha的结果:");
        System.out.println(my.contains("java"));
        System.out.println(my.contains(null));
        System.out.println(my.contains("haha"));
        System.out.println("-------------------------------------");
        System.out.println("替换java,null后:");
        my.update("java","JAVA");
        my.update(null,"songhk");
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
        System.out.println("-------------------------------------");
        System.out.println("删除hello,JAVA,null,xiaoyang后:");
        my.delete("hello");
        my.delete("JAVA");
        my.delete(null);
        my.delete("xiaoyang");
        System.out.println("所有元素:");
        for (String s : my) {
            System.out.println(s);
        }
    }
}

3.栈

3.1栈的特点

  • 栈(Stack)又称为堆栈或堆叠,是限制仅在表的一端进行插入和删除运算的线性表。
  • 栈按照先进后出(FILO,first in last out)的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶。每次删除(退栈)的总是删除当前栈中最后插入(进栈)的元素,而最先插入的是被放在栈的底部,要到最后才能删除。
  • 核心类库中的栈结构有StackLinkedList
  • Stack就是顺序栈,它是Vector的子类。
  • LinkedList是链式栈。
  • 体现栈结构的操作方法:
  • peek()方法:查看栈顶元素,不弹出
  • pop()方法:弹出栈
  • push(E e)方法:压入栈
  • 时间复杂度:
  • 索引: O(n)
  • 搜索: O(n)
  • 插入: O(1)
  • 移除: O(1)
  • 如图所示:

3.2 Stack使用举例

public class TestStack {
    /*
    * 测试Stack
    * */
    @Test
    public void test1(){
        Stack<Integer> list = new Stack<>();
        list.push(1);
        list.push(2);
        list.push(3);
        System.out.println("list = " + list);
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
/*
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/
        while(!list.empty()){
            System.out.println("list.pop() =" + list.pop());
        }
    }
    /*
    * 测试LinkedList
    * */
    @Test
    public void test2(){
        LinkedList<Integer> list = new LinkedList<>();
        list.push(1);
        list.push(2);
        list.push(3);
        System.out.println("list = " + list);
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
        System.out.println("list.peek()=" + list.peek());
/*
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());
    System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/
        while(!list.isEmpty()){
            System.out.println("list.pop() =" + list.pop());
        }
    }
}

3.3 自定义栈

public class MyStack {
    // 向栈当中存储元素,我们这里使用一维数组模拟。存到栈中,就表示存储到数组中。
    // 为什么选择Object类型数组?因为这个栈可以存储java中的任何引用类型的数据
    private Object[] elements;
    // 栈帧,永远指向栈顶部元素
    // 那么这个默认初始值应该是多少。注意:最初的栈是空的,一个元素都没有。
    //private int index = 0; // 如果index采用0,表示栈帧指向了顶部元素的上方。
    //private int index = -1; // 如果index采用-1,表示栈帧指向了顶部元素。
    private int index;
    /**
     * 无参数构造方法。默认初始化栈容量10.
     */
    public MyStack() {
        // 一维数组动态初始化
        // 默认初始化容量是10.
        this.elements = new Object[10];
        // 给index初始化
        this.index = -1;
    }
    /**
     * 压栈的方法
     * @param obj 被压入的元素
     */
    public void push(Object obj) throws Exception {
        if(index >= elements.length - 1){
            //方式1:
            //System.out.println("压栈失败,栈已满!");
            //return;
            //方式2:
            throw new Exception("压栈失败,栈已满!");
        }
        // 程序能够走到这里,说明栈没满
        // 向栈中加1个元素,栈帧向上移动一个位置。
        index++;
        elements[index] = obj;
        System.out.println("压栈" + obj + "元素成功,栈帧指向" + index);
    }
    /**
     * 弹栈的方法,从数组中往外取元素。每取出一个元素,栈帧向下移动一位。
     * @return
     */
    public Object pop() throws Exception {
        if (index < 0) {
            //方式1:
            //System.out.println("弹栈失败,栈已空!");
            //return;
            //方式2:
            throw new Exception("弹栈失败,栈已空!");
        }
        // 程序能够执行到此处说明栈没有空。
        Object obj = elements[index];
        System.out.print("弹栈" + obj + "元素成功,");
        elements[index] = null;
        // 栈帧向下移动一位。
        index--;
        return obj;
    }
    // set和get也许用不上,但是你必须写上,这是规矩。你使用IDEA生成就行了。
    // 封装:第一步:属性私有化,第二步:对外提供set和get方法。
    public Object[] getElements() {
        return elements;
    }
    public void setElements(Object[] elements) {
        this.elements = elements;
    }
    public int getIndex() {
        return index;
    }
    public void setIndex(int index) {
        this.index = index;
    }
}

数据结构(数组、链表、栈、队列、树)(二):https://developer.aliyun.com/article/1416346

相关文章
|
2天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
19 5
|
23天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
61 16
|
2月前
|
存储 Java
HashMap之链表转红黑树(树化 )-treefyBin方法源码解读(所有涉及到的方法均有详细解读,欢迎指正)
本文详细解析了Java HashMap中链表转红黑树的机制,包括树化条件(链表长度达8且数组长度≥64)及转换流程,确保高效处理大量数据。
93 1
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
32 0
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
28 0
|
6月前
|
存储 SQL 算法
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
|
6月前
|
存储 SQL 算法
LeetCode 题目 86:分隔链表
LeetCode 题目 86:分隔链表
|
6月前
|
存储 算法 Java
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
56 2