《C++ Concurrencyin Action》第6章--基于锁的并发数据结构设计

简介: 《C++ Concurrencyin Action》第6章--基于锁的并发数据结构设计
前言:

本章主要内容:

1、并发数据结构设计的意义

2、 指导如何设计

3、实现为并发设计的数据结构

在上一章中,我们对底层原子操作和内存模型有了详尽的了解。在本章中,我们将先将底层的东西放在一边(将会在第7章再次提及),来对数据结构做一些讨论。

数据结构的选择,对于程序来说,是其解决方案的重要组成部分,当然,并行程序也不例外。如果一种数据结构可以被多个线程所访问,其要不就是绝对不变的(其值不会发生变化,并且不需同步),要不程序就要对数据结构进行正确的设计,以确保其能在多线程环境下能够(正确的)同步。一种选择是使用独立的互斥量,其可以锁住需要保护的数据(这种方法已经在第3和第4章中提到),另一种选择是设计一种能够并发访问的数据结构。

在设计并发数据结构时,你可以使用基本多线程应用中的构建块(之前章节中有提及),比如,互斥量和条件变量。当然,你也已经在之前的章节的例子中看到,怎样联合不同的构建块,对数据结构进行写入,并且保证这些构建块都是在并发环境下是线程安全的。

在本章,我们将了解一些并发数据结构设计的基本准则。然后,我们将再次重温锁和条件变量的基本构建块。最后,会去了解更为复杂的数据结构。在第7章,我们将了解,如何正确的“返璞归真”,并使用第5章提到的原子操作,去构建无锁的数据结构。

好吧!多说无益,让我们来看一下并发数据结构的设计,都需要些什么

6.1 并发设计的意义何在?

设计并发数据结构,意味着多个线程可以并发的访问这个数据结构,线程可对这个数据结构做相同或不同的操作,并且每一个线程都能在自己的自治域中看到该数据结构。且在多线程环境下,无数据丢失和损毁,所有的数据需要维持原样,且无条件竞争。这样的数据结构,称之为“线程安全”的数据结构。通常情况下,当多个线程对数据结构进行同一并发操作是安全的,但不同操作则需要单线程独立访问数据结构。或相反,当线程执行不同的操作时,对同一数据结构的并发操作是安全的,而多线程执行同样的操作,则会出现问题。

实际的设计意义并不止上面提到的那样:这就意味着,要为线程提供并发访问数据结构的机会。本质上,是使用互斥量提供互斥特性:在互斥量的保护下,同一时间内只有一个线程可以获取互斥锁。互斥量为了保护数据,显式的阻止了线程对数据结构的并发访问。

这被称为序列化(serialzation):线程轮流访问被保护的数据。这其实是对数据进行串行的访问,而非并发。因此,你需要对数据结构的设计进行仔细斟酌,确保其能真正并发访问。虽然,一些数据结构有着比其他数据结构更多的并发访问范围,但是在所有情况下的思路都是一样的:减少保护区域,减少序列化操作,就能提升并发访问的潜力。

在我们进行数据结构的设计之前,让我们快速的浏览一下,在并发设计中的指导建议。

6.1.1 数据结构并发设计的指导与建议

如之前提到的,当设计并发数据结构时,有两方面需要考量:一是确保访问是安全的,二是能真正的并发访问。在第3章的时候,已经对如何保证数据结构是线程安全的做过简单的描述:

  • 确保无线程能够看到,数据结构的“不变量”破坏时的状态。
  • 小心那些会引起条件竞争的接口,提供完整操作的函数,而非操作步骤。
  • 注意数据结构的行为是否会产生异常,从而确保“不变量”的状态稳定。
  • 将死锁的概率降到最低。使用数据结构时,需要限制锁的范围,且避免嵌套锁的存在。

在你思考设计细节前,你还需要考虑这个数据结构对于使用者来说有什么限制;当一个线程通过一个特殊的函数对数据结构进行访问时,那么还有哪些函数能被其他的线程安全调用呢?

这是一个很重要的问题,普通的构造函数和析构函数需要独立访问数据结构,所以用户在使用的时候,就不能在构造函数完成前,或析构函数完成后对数据结构进行访问。当数据结构支持赋值操作,swap(),或拷贝构造时,作为数据结构的设计者,即使数据结构中有大量的函数被线程所操纵时,你也需要保证这些操作在并发环境下是安全的(或确保这些操作能够独立访问),以保证并发访问时不会出现错误。

第二个方面是,确保真正的并发访问。这里没法提供更多的指导意见;不过,作为一个数据结构的设计者,在设计数据结构时,自行考虑以下问题:

(1) 锁的范围中的操作,是否允许在所外执行?

(2) 数据结构中不同的区域是否能被不同的互斥量所保护?

(3) 所有操作都需要同级互斥量保护吗?

(4) 能否对数据结构进行简单的修改,以增加并发访问的概率,且不影响操作语义?

这些问题都源于一个指导思想:如何让序列化访问最小化,让真实并发最大化?允许线程并发读取的数据结构并不少见,而对数据结构的修改,必须是单线程独立访问。这种结构,类似于boost::shared_mutex。同样的,这种数据结构也很常见——支持在多线程执行不同的操作时,并序列化执行相同的操作的线程(你很快就能看到)。

最简单的线程安全结构,通常使用的是互斥量和锁,对数据进行保护。虽然,这么做还是有问题(如同在第3中提到的那样),不过这样相对简单,且保证只有一个线程在同一时间对数据结构进行一次访问。为了让你轻松的设计线程安全的数据结构,接下来了解一下基于锁的数据结构,以及第7章将提到的无锁并发数据结构的设计。

6.2 基于锁的并发数据结构

基于锁的并发数据结构设计,需要确保访问线程持有锁的时间最短。对于只有一个互斥量的数据结构来说,这十分困难。需要保证数据不被锁之外的操作所访问到,并且还要保证不会在固有结构上产生条件竞争(如第3章所述)。当你使用多个互斥量来保护数据结构中不同的区域时,问题会暴露的更加明显,当操作需要获取多个互斥锁时,就有可能产生死锁。所以,在设计时,使用多个互斥量时需要格外小心。

在本节中,你将使用6.1.1节中的指导建议,来设计一些简单的数据结构——使用互斥量和锁的方式来保护数据。每一个例子中,都是在保证数据结构是线程安全的前提下,对数据结构并发访问的概率(机会)进行提高。

我们先来看看在第3章中的实现,这个实现就是一个十分简单的数据结构,它只使用了一个互斥量。但是,这个结构是线程安全的吗?它离真正的并发访问又有多远呢?

6.2.1 线程安全栈——使用锁

我们先把第3章中线程安全的栈拿过来看看:(这里试图实现一个线程安全版的std:stack<>)

清单6.1 线程安全栈的类定义

#include <exception>
struct empty_stack: std::exception
{
   const char*what() const throw();
};
template<typename T>
class threadsafe_stack
{
private:
  std::stack<T> data;
  mutablestd::mutex m;
public:
  threadsafe_stack(){}
  threadsafe_stack(const threadsafe_stack& other)
   {
      std::lock_guard<std::mutex> lock(other.m);
      data=other.data;
   }
   threadsafe_stack& operator=(const threadsafe_stack&) = delete;
   void push(Tnew_value)
   {
      std::lock_guard<std::mutex> lock(m);
      data.push(std::move(new_value));  // **1**
   }
   std::shared_ptr<T> pop()
   {
      std::lock_guard<std::mutex> lock(m);
      if(data.empty()) throw empty_stack(); // **2**
      std::shared_ptr<T> constres(std::make_shared<T>(std::move(data.top())));  // **3**
      data.pop();  //** 4**
      return res;
  }
  void pop(T& value)
  {
     std::lock_guard<std::mutex> lock(m);
     if(data.empty()) throw empty_stack();
     value=std::move(data.top());  // **5**
     data.pop();  // **6**
  }
  bool empty()const
  {
     std::lock_guard<std::mutex> lock(m);
     return data.empty();
  }
};

来看看指导意见是如何应用的。

首先,互斥量m能保证基本的线程安全,那就是对每个成员函数进行加锁保护。这就保证在同一时间内,只有一个线程可以访问到数据,所以能够保证,数据结构的“不变量”被破坏时,不会被其他线程看到。

其次,在empty()和pop()成员函数之间会存在潜在的竞争,不过代码会在pop()函数上锁时,显式的查询栈是否为空,所以这里的竞争是非恶性的。pop()通过对弹出值的直接返回,就可避免std::stack<>中top()和pop()两成员函数之间的潜在竞争。

再次,这个类中也有一些异常源。对互斥量上锁可能会抛出异常,因为上锁操作是每个成员函数所做的第一个操作,所以这是极其罕见的(因为这意味这问题不在锁上,就是在系统资源上)。因无数据修改,所以其是安全的。因解锁一个互斥量是不会失败的,所以段代码很安全,并且使用std::lock_guard<>也能保证互斥量上锁的状态。

对data.push()①的调用可能会抛出一个异常,不是拷贝/移动数据值时,就是内存不足的时候。不管是哪种,std::stack<>都能保证其实安全的,所以这里也没有问题。

在第一个重载pop()中,代码可能会抛出一个empty_stack的异常②,不过数据没有被修改,所以其是安全的。对于res的创建③,也可能会抛出一个异常,这有两方面的原因:对std::make_shared的调用,可能无法分配出足够的内存去创建新的对象,并且内部数据需要对新对象进行引用;或者,在拷贝或移动构造到新分配的内存中返回时抛出异常。两种情况下,c++运行库和标准库能确保这里不会出现内存泄露,并且新创建的对象(如果有的话)都能被正确销毁。因为没有对栈进行任何修改,所以这里也不会有问题。当调用data.pop()④时,其能确保不抛出异常,并且返回结果,所以这个重载pop()函数“异常-安全”。

第二个重载pop()类似,除了在拷贝赋值或移动赋值的时候会抛出异常⑤,当构造一个新对象和一个std::shared_ptr实例时都不会抛出异常。同样,在调用data.pop()⑥(这个成员函数保证不会抛出异常)之前,依旧没有对数据结构进行修改,所以这个函数也为“异常-安全”。

最后,empty()也不会修改任何数据,所以也是“异常-安全”函数。

在调用用户代码会持有锁,所以这里有两个地方可能会产生死锁:进行拷贝构造或移动构造(①,③)时,和在对数据项进行拷贝赋值或移动赋值操作⑤的时候;还有一个潜在死锁的地方在于,用户定义的操作符new。当这些函数,无论是以直接调用栈的成员函数的方式,还是在成员函数进行操作时,对已经插入或删除的数据进行操作的方式,对锁进行获取,都可能造成死锁。不过,用户要对栈负责,当栈未对一个数据进行拷贝或分配时,用户就不能想当然的将其添加到栈中。

所有成员函数都使用st::lack_guard<>来保护数据,所以栈的成员函数能有“线程安全”的表现。当然,构造与析构函数不是“线程安全”的,不过这也不成问题,因为对实例的构造与析构只能有一次。调用一个不完全构造对象或是已销毁对象的成员函数,无论在那种编程方式下,都不可取。所以,用户就要保证在栈对象完成构建前,其他线程无法对其进行访问;并且,一定要保证在栈对象销毁后,所有线程都要停止对其进行访问。

即使在多线程情况下,并发的调用成员函数是安全的(因为使用锁),也要保证在单线程的情况下,数据结构做出正确反应。序列化线程会隐性的限制程序性能,这就是栈争议声最大的地方:当一个线程在等待锁时,它就会无所事事。同样的,对于栈来说,等待添加元素也是没有意义的,所以当一个线程需要等待时,其会定期检查empty()或pop(),以及对empty_stack异常进行关注。这样的现实会限制栈的实现的方式,在线程等待的时候,会浪费宝贵的资源去检查数据,或是要求用户写写外部等待和提示代码(例如,使用条件变量),这就使内部锁失去存在的意义——这就意味着资源的浪费。第4章中的队列,就是一种使用条件内部变量进行等待的数据结构,接下来我们就来了解一下。

6.2.2 线程安全队列——使用锁和条件变量

第4章中的线程安全队列,在清单6.2中重现一下。和使用仿std::stack<>建立的栈很像,这里队列的建立也是参照了std::queue<>。不过,与标准容器的接口不同,我们要设计的是能在多线程下安全并发访问的数据结构。

清单6.2 使用条件变量实现的线程安全队列

template<typename T>
class threadsafe_queue
{
private:
  mutablestd::mutex mut;
  std::queue<T> data_queue;
  std::condition_variable data_cond;
public:
 threadsafe_queue(){}
  void push(Tnew_value)
  {
    std::lock_guard<std::mutex> lk(mut);
    data_queue.push(std::move(data));
    data_cond.notify_one();  //** 1**
  }
  void wait_and_pop(T& value)  // **2**
  {
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk,[this]{return !data_queue.empty();});
    value=std::move(data_queue.front());
    data_queue.pop();
  }
 std::shared_ptr<T> wait_and_pop() // **3**
  {
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk,[this]{return !data_queue.empty();});  // **4**
    std::shared_ptr<T>res(std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    return res;
  }
  bool try_pop(T& value)
  {
   std::lock_guard<std::mutex> lk(mut);
   if(data_queue.empty())
      return false;
   value=std::move(data_queue.front());
   data_queue.pop();
    return true;
  }
  std::shared_ptr<T> try_pop()
  {
      std::lock_guard<std::mutex> lk(mut);
      if(data_queue.empty())
        return std::shared_ptr<T>();  // **5**
       std::shared_ptr<T> res(std::make_shared<T>(std::move(data_queue.front())));
       data_queue.pop();
       return res;
  }
  bool empty()const
  {
    std::lock_guard<std::mutex> lk(mut);
    return data_queue.empty();
  }
};

除了在push()①中调用data_cond.notify_one(),以及wait_and_pop()②③,6.2中对队列的实现与6.1中对栈的实现十分相近。两个重载try_pop()除了在队列为空时抛出异常,其他的与6.1中pop()函数完全一样。不同的是,在6.1中对值的检索会返回一个bool值,而在6.2中,当指针指向空值的时候会返回NULL指针⑤,这同样也是实现栈的一个有效途径。所以,即使排除掉wait_and_pop()函数,之前对栈的分析依旧适用于这里。

wiat_and_pop()函数是等待队列向栈进行输入的一个解决方案;比起持续调用empty(),等待线程调用wait_and_pop()函数和数据结构处理等待中的条件变量的方式要好很多。对于data_cond.wait()的调用,直到队列中有一个元素的时候,才会返回,所以你就不用担心会出现一个空队列的情况了,还有,数据会一直被互斥锁保护。因为不变量这里并未发生变化,所以函数不会添加新的条件竞争或是死锁的可能。

异常安全在这里的会有一些变化,当不止一个线程等待对队列进行推送操作是,只会有一个线程,因得到data_cond.notify_one(),而继续工作着。但是,如果这个工作线程在wait_and_pop()中抛出一个异常,例如:构造新的std::shared_ptr<>对象④时抛出异常,那么其他线程则会永世长眠。当这种情况是不可接受时,这里的调用就需要改成data_cond.notify_all(),这个函数将唤醒所有的工作线程,不过,当大多线程发现队列依旧是空时,又会耗费很多资源让线程重新进入睡眠状态。第二种替代方案是,当有异常抛出的时候,让wait_and_pop()函数调用notify_one(),从而让个另一个线程可以去尝试索引存储的值。第三种替代方案就是,将std::shared_ptr<>的初始化过程移到push()中,并且存储std::shared_ptr<>实例,而非直接使用数据的值。将std::shared_ptr<>拷贝到内部std::queue<>中,就不会抛出异常了,这样wait_and_pop()又是安全的了。下面的程序清单,就是根据第三种方案进行修改的。

清单6.3 持有std::shared_ptr<>实例的线程安全队列

template<typename T>
class threadsafe_queue
{
private:
  mutable std::mutex mut;
  std::queue<std::shared_ptr<T> > data_queue;
  std::condition_variable data_cond;
public:
  threadsafe_queue(){}
  void wait_and_pop(T& value)
  {
     std::unique_lock<std::mutex> lk(mut);
     data_cond.wait(lk,[this]{return !data_queue.empty();});
     value=std::move(*data_queue.front()); // **1**
     data_queue.pop();
  }
  bool try_pop(T& value)
  {
     std::lock_guard<std::mutex> lk(mut);
     if(data_queue.empty())
         return false;
     value=std::move(*data_queue.front()); // **2**
     data_queue.pop();
     return true;
  }
  std::shared_ptr<T> wait_and_pop()
  {
     std::unique_lock<std::mutex> lk(mut);
     data_cond.wait(lk,[this]{return !data_queue.empty();});
     std::shared_ptr<T> res=data_queue.front();  // **3**
     data_queue.pop();
     return res;
   }
  std::shared_ptr<T> try_pop()
  {
      std::lock_guard<std::mutex> lk(mut);
      if(data_queue.empty())
        return std::shared_ptr<T>();
      std::shared_ptr<T> res=data_queue.front();  // **4**
      data_queue.pop();
      return res;
   }
   void push(Tnew_value)
   {
      std::shared_ptr<T> data(
      std::make_shared<T>(std::move(new_value)));  //** 5**
      std::lock_guard<std::mutex> lk(mut);
      data_queue.push(data);
      data_cond.notify_one();
  }
  bool empty()const
  {
      std::lock_guard<std::mutex> lk(mut);
      return data_queue.empty();
  }
};

为让std::shared_ptr<>持有数据的结果显而易见:弹出函数会持有一个变量的引用,为了接收这个新值,必须对存储的指针进行解引用①,②;并且,在返回到调用函数前,弹出函数都会返回一个std::shared_ptr<>实例,这里实例可以在队列中做检索③,④。

数据被std::shared_ptr<>持有的好处:当新的实例分配结束时,其不会被锁在push()⑤的锁当中,而在清单6.2中,只能在pop()持有锁时完成。因为内存分配通常是代价昂贵的操作,这种方式对队列的性能有很大的帮助,其削减了互斥量持有的时间,允许其他线程在分配内存的同时,对队列执行其他的操作。

就像栈的例子那样,使用互斥量保护整个数据结构,不过会限制队列对并发的支持;虽然,多线程可能被队列中的各种成员函数所阻塞,但是仍有一个线程能在任意时间内进行工作。不过,这种限制的部分来源是因为在实现中使用了std::queue<>;因为使用标准容器的原因,数据处于保护中。要对数据结构实现进行具体的控制,需要提供更多细粒度锁,来完成更高级的并发。

6.2.3** 线程安全队列——使用细粒度锁和条件变量**

在清单6.2和6.3中,使用一个互斥量对一个数据(data_queue)进行保护。为了使用细粒度锁,需要看一下队列内部的组成结构,并且将一个互斥量与每个数据相关联。

对于队列来说,最简单的数据结构就是单链表了,就如图6.1那样。队列里包含一个头指针,其指向链表中的第一个元素,并且每一个元素都会指向下一个元素。从队列中删除数据,其实就是将头指针指向下一个元素,并将之前头指针指向的值进行返回。

向队列中添加元素是要从结尾进行的。为了做到这点,队列里还有一个尾指针,其指向链表中的最后一个元素。新节点的加入将会改变尾指针的next指针,之前最后一个元素将会指向新添加进来的元素,新添加进来的元素的next将会使新的尾指针。当链表为空时,头/尾指针皆为NULL。

图6.1 用单链表表示的队列

下面的清单中的代码,是一个简单队列的实现,基于清单6.2代码的精简版本;因为这个队列仅供单线程使用,所以这实现中只有一个try_pop()函数;并且,没有wait_and_pop()函数。

清单6.4 队列实现——单线程版

template<typename T>
class queue
{
private:
  struct node
  {
    T data;
    std::unique_ptr<node> next;
    node(Tdata_):data(std::move(data_)){}
  };
  std::unique_ptr<node> head; //** 1**
  node* tail;  //** 2**
public:
  queue(){}
  queue(constqueue& other)=delete;
  queue&operator=(const queue& other)=delete;
  std::shared_ptr<T> try_pop()
  {
    if(!head)
    {
      return std::shared_ptr<T>();
    }
   std::shared_ptr<T> const res(std::make_shared<T>(std::move(head->data)));
   std::unique_ptr<node> const old_head=std::move(head);
   head=std::move(old_head->next); // **3**
   return res;
  }
  void push(Tnew_value)
  {
    std::unique_ptr<node> p(new node(std::move(new_value)));
    node*const new_tail=p.get();
    if(tail)
    {
     tail->next=std::move(p);  //** 4**
    }
    else
    {
     head=std::move(p);  // **5**
    }
   tail=new_tail;  //** 6**
  }
};

首先,注意在清单呢6.4中使用了std::unique_ptr来管理节点,因为其能保证节点(其引用数据的值)在删除时候,不需要使用delete操作显式删除。这样的关系链表,管理着从头结点到尾节点的每一个原始指针。

虽然,这种实现对于单线程来说没什么问题,但是,当你在多线程情况下,尝试使用细粒度锁时,就会出现问题。因为在给定的实现中有两个数据项(head①和tail②);即使,使用两个互斥量,来保护头指针和尾指针,也会出现问题。

显而易见的问题就是push()可以同时修改头指针⑤和尾指针⑥,所以push()函数会同时获取两个互斥量。虽然会将两个互斥量都上锁,但这还不是太糟糕的问题。糟糕的问题是push()和pop()都能访问next指针指向的节点:push()可更新tail->next④,而后try_pop()读取read->next③。当队列中只有一个元素时,head==tail,所以head->next和tail->next是同一个对象,并且这个对象需要保护。不过,“在同一个对象在未被head和tail同时访问时,push()和try_pop()锁住的是同一个锁”,就不对了。所以,你就没有比之间实现更好的选择了。这里会“柳暗花明又一村”吗?

通过分离数据实现并发

你可以使用“预分配一个虚拟节点(无数据),确保这个节点永远在队列的最后,用来分离头尾指针能访问的节点”的办法,走出这个困境。对于一个空队列来说,head和tail都属于虚拟指针,而非空指针。这个办法挺好,因为当队列为空时,try_pop()不能访问head->next了。当添加一个节点入队列时(这时有真实节点了),head和tail现在指向不同的节点,所以就不会在head->next和tail->next上产生竞争。这里的缺点是,你必须额外添加一个间接层次的指针数据,来做虚拟节点。下面的代码描述了这个方案如何实现。

清单6.5 带有虚拟节点的队列

template<typename T>
class queue
{
private:
  struct node
  {
   std::shared_ptr<T> data;  //** 1**
   std::unique_ptr<node> next;
  };
  std::unique_ptr<node> head;
  node* tail;
public:
  queue():head(new node),tail(head.get()){}  // **2**
  queue(constqueue& other)=delete;
  queue&operator=(const queue& other)=delete;
  std::shared_ptr<T> try_pop()
  {
    if(head.get()==tail)  // **3**
    {
      return std::shared_ptr<T>();
    }
    std::shared_ptr<T> const res(head->data);  // **4**
    std::unique_ptr<node> old_head=std::move(head);
    head=std::move(old_head->next);  //** 5**
    return res;  // **6**
  }
  void push(Tnew_value)
  {
    std::shared_ptr<T>new_data(std::make_shared<T>(std::move(new_value)));  // **7**
    std::unique_ptr<node> p(new node); //**8**
    tail->data=new_data;  // **9**
    node* constnew_tail=p.get();
    tail->next=std::move(p);
    tail=new_tail;
  }
};

try_pop()不需要太多的修改。首先,你可以拿head和tail③进行比较,这就要比检查指针是否为空的好,因为虚拟节点意味着head不可能是空指针。head是一个std::unique_ptr对象,你需要使用head.get()来做比较。其次,因为node现在存在数据指针中①,你就可以对指针进行直接检索④,而非构造一个T类型的新实例。push()函数改动最大:首先,你必须在堆上创建一个T类型的实例,并且让其与一个std::shared_ptr<>对象相关联⑦(节点使用std::make_shared就是为了避免内存二次分配,避免增加引用次数)。创建的新节点就成为了虚拟节点,所以你不需要为new_value提供构造函数⑧。反而这里你需要将new_value的副本赋给之前的虚拟节点⑨。最终,为了让虚拟节点存在在队列中,你不得不使用构造函数来创建它②。

那么现在,我确信你会对如何对如何修改队列,让其变成一个线程安全的队列感到惊讶。好吧,现在的push()只能访问tail,而不能访问head,这就是一个进步try_pop()可以访问head和tail,但是tail只需在最初进行比较,所以所存在的时间很短。重大的提升在于,虚拟节点意味着try_pop()和push()不能对同一节点进行操作,所以这里已经不再需要互斥了。那么,你只需要使用一个互斥量来保护head和tail就够了。那么,现在应该锁哪里?

我们的目的是为了最大程度的并发化,所以你需要上锁的时间,要尽可能的小。push()很简单:互斥量需要对tail的访问进行上锁,这就意味着你需要对每一个新分配的节点进行上锁⑧,还有在你对当前尾节点进行赋值的时候⑨也需要上锁。锁需要持续到函数结束时才能解开。

try_pop()就不简单了。首先,你需要使用互斥量锁住head,一直到head弹出。实际上,互斥量决定了哪一个线程来进行弹出操作。一旦head被改变⑤,你擦能解锁互斥量;当在返回结果时,互斥量就不需要进行上锁了⑥。这使得访问tail需要一个尾互斥量。因为,你需要只需要访问tail一次,且只有在访问时才需要互斥量。这个操作最好是通过函数进行包装。事实上,因为代码只有在成员需要head时,互斥量才上锁,这项也需要包含在包装函数中。最终代码如下所示。

清单6.6 线程安全队列——细粒度锁版

template<typename T>
class threadsafe_queue
{
private:
  struct node
  {
   std::shared_ptr<T> data;
   std::unique_ptr<node> next;
  };
  std::mutexhead_mutex;
  std::unique_ptr<node> head;
  std::mutextail_mutex;
  node* tail;
  node*get_tail()
  {
    std::lock_guard<std::mutex> tail_lock(tail_mutex);
    return tail;
  }
 std::unique_ptr<node> pop_head()
  {
   std::lock_guard<std::mutex> head_lock(head_mutex);
   if(head.get()==get_tail())
    {
      return nullptr;
    }
    std::unique_ptr<node> old_head=std::move(head);
    head=std::move(old_head->next);
    return old_head;
  }
public:
 threadsafe_queue():head(new node),tail(head.get()){}
 threadsafe_queue(const threadsafe_queue& other)=delete;
 threadsafe_queue& operator=(const threadsafe_queue&other)=delete;
 std::shared_ptr<T> try_pop()
  {
     std::unique_ptr<node> old_head=pop_head();
     return old_head?old_head->data:std::shared_ptr<T>();
  }
  void push(Tnew_value)
  {
      std::shared_ptr<T>new_data(std::make_shared<T>(std::move(new_value)));
      std::unique_ptr<node> p(new node);
      node*const new_tail=p.get();
      std::lock_guard<std::mutex> tail_lock(tail_mutex);
      tail->data=new_data;
      tail->next=std::move(p);
      tail=new_tail;
  }
};

让我们用挑剔的目光来看一下上面的代码,并考虑6.1.1节中给出的指导意见。在你观察不变量前,你需要确定的状态有:

· tail->next == nullptr

· tail->data == nullptr

· head == taill(意味着空列表)

· 单元素列表 head->next = tail

· 在列表中的每一个节点x,x!=tail且x->data指向一个T类型的实例,并且x->next指向列表中下一个节点。x->next == tail意味着x就是列表中最后一个节点

· 顺着head的next节点找下去,最终会找到tail

这里的push()很简单:仅修改了被tail_mutex的数据,因为新的尾节点是一个空节点,并且其data和next都为旧的尾节点(实际上的尾节点)设置好,所以其能维持不变量的状态。

有趣的部分在于try_pop()上。事实证明,不仅需要对tail_mutex上锁,来保护对tail的读取;还要保证在从头读取数据时,不会产生数据竞争。如果没有这些互斥量,当一个线程调用try_pop()的同时,另一个线程调用push(),那么这里操作顺序将不可预测。尽管,每一个成员函数都持有一个互斥量,这些互斥量能保护数据不会同时被多个线程访问到;并且,队列中的所有数据来源,都是通过调用push()得到的。因为线程可能会无序的方位同一数据,所以这里就会有数据竞争(正如你在第5章看到的那样),以及未定义行为。幸运的是,在get_tail()中的tail_mutex解决了所有的问题。因为调用get_tail()将会锁住同名锁,就像push()一样,这就为两个操作规定好了顺序。要不就是get_tail()在push()之前被调用,这种情况下,线程可以看到旧的尾节点,要不就是在push()之后完成,这种情况下,线程就能看到tail的新值,以及新数据前的真正tail的值。

当get_tail()调用前,head_mutex已经上锁,这一步也是很重要的哦。如果不这样,调用pop_head()时就会被get_tail()和head_mutex所卡住,因为其他线程调用try_pop()(以及pop_head())时,都需要先获取锁,然后阻止从下面的过程中初始化线程:

std::unique_ptr<node> pop_head() // 这是个有缺陷的实现
{
  node* constold_tail=get_tail();  // **1**在head_mutex范围外获取旧尾节点的值
  std::lock_guard<std::mutex> head_lock(head_mutex);
  if(head.get()==old_tail)  //** 2**
  {
    return nullptr;
  }
  std::unique_ptr<node> old_head=std::move(head);
  head=std::move(old_head->next); //** 3**
  return old_head;
}

这是一个有缺陷的实现,调用get_tail()是在锁的范围之外,你可能也许会发现head和tail,在你初始化线程,并获取head_mutex时,发生了改变。并且,不只是返回尾节点时,返回的不是尾节点了,其值甚至都不列表中的值了。即使head是最后一个节点,这也意味着head和old_tail②比较失败。因此,当你更新head③时,可能会将head移到tail之后,这样的话就意味着数据结构遭到了破坏。在正确实现中(清单6.6),需要保证在head_mutex保护的范围内调用get_tail()。这就能保证没有其他线程能对head进行修改,并且tail会向正确的方向移动(当有新节点添加进来时),这样就很安全了。head不会传递给get_tail()的返回值,所以不变量的状态时稳定的。

当使用pop_head()更新head时(从队列中删除节点),互斥量就已经上锁了,并且try_pop()可以提取数据,并在确实有个数据的时候删除一个节点(若没有数据,则返回std::shared_ptr<>的空实例),因为只有一个线程可以访问这个节点,所以根据我们所掌握的知识,认为这个操作是安全的。

接下来,外部接口就相当于清单6.2代码中的子集了,所以同样的分析结果:对于固有接口来说,不存在条件竞争。

异常是很有趣的东西。虽然,你已经改变了数据的分配模式,但是异常可能从别的地方袭来。try_pop()中的对锁的操作会产生异常,并直到锁获取才能对数据进行修改。因此,try_pop()是异常安全的。另一方面,push()可以在堆上新分配出一个T的实例,以及一个node的新实例,这里可能会抛出异常。但是,所有分配的对象都赋给了智能指针,那么当异常发生时,他们就会被释放掉。一旦锁被获取,push()中的操作就不会抛出异常,所以push()也是异常安全的。

因为没有修改任何接口,所以不会死锁。在实现内部也不会有死锁;唯一需要获取两个锁的是pop_head(),这个函数需要获取head_mutex和tail_mutex,所以不会产生死锁。

那么剩下的问题就都在实际并发的可行性上了。这个结构对并发访问的考虑要多于清单6.2中的代码,因为这里锁粒度更加的小,并且更多的数据不在锁的保护范围内。比如,在push()中,新节点和新数据的分配都不需要锁来保护。这就意味着多线程情况下,节点及数据的分配是“安全”并发的。同一时间内,只有一个线程可以将它的节点和数据添加到队列中,所以代码中只是简单使用了指针赋值的形式,相较于基于std::queue<>的实现中,对于std::queue<>的内部操作进行上锁,这个结构中就不需要了。

同样,try_pop()持有tail_mutex也只有很短的时间,只为保护对tail的读取。因此,当有数据push进队列后,try_pop()几乎及可以完全并发调用了。同样在执行中,对head_mutex的持有时间也是极短的。当并发访问时,这就会增加对try_pop()的访问次数;且只有一个线程,在同一时间内可以访问pop_head(),且多线程情况下可以删除队列中的旧节点,并且安全的返回数据。

等待数据弹出

OK,所以清单6.6提供了一个使用细粒度锁的线程安全队列,不过只有try_pop()可以并发访问(且只有一个重载存在)。那么在清单6.2中方便的wait_and_pop()呢?你能通过细粒度锁实现一个相同功能的接口吗?

当然,答案是“是的”,不过的确有些困难,困难在哪里?修改push()是相对简单的:只需要在函数体末尾添加data_cond.notify_ont()函数的调用即可(如同清单6.2中那样)。当然,事实并没有那么简单:你使用细粒度锁,是为了保证最大程度的并发。当将互斥量和notify_one()混用的时,如果被通知的线程在互斥量解锁后被唤醒,那么这个线程就不得不等待互斥量上锁。另一方面,当解锁操作在notify_one()之前调用,那么互斥量可能会等待线程醒来,来获取互斥锁(假设没有其他线程对互斥量上锁)。这可能是一个微小的改动,但是对于一些情况来说,就显的很重要了。

wait_and_pop()就有些复杂了,因为需要确定在哪里等待,也就是函数在哪里执行,并且需要确定哪些互斥量需要上锁。等待的条件是“队列非空”,这就意味着head!=tail。这样写的话,就需要同时获取head_mutex和tail_mutex,并对其进行上锁,不过在清单6.6中已经使用tail_mutex来保护对tail的读取,以及不用和自身记性比较,所以这种逻辑也同样适用于这里。如果有函数让head!=get_tail(),你只需要持有head_mutex,然后你就可以使用锁,对data_cond.wait()的调用进行保护。当你将等待逻辑添加入结构当中,那么实现的方式与try_pop()基本上是一样的。

对于try_pop()和wait_and_pop()的重载都需要深思熟虑。当你将返回std::shared_ptr<>替换为从“old_head后索引出的值,并且拷贝赋值给value参数”进行返回时,那么这里将会存在异常安全问题。数据项在互斥锁未上锁的情况下被删除,将剩下的数据返回给调用者。不过,当拷贝赋值抛出异常(可能性很大)时,数据项将会丢失,因为它没有被返回队列原来的位置上。

当T类型有无异常抛出的移动赋值操作,或无异常抛出的交换操作时,你可以使用它,不过,你肯定更喜欢一种通用的解决方案,无论T是什么类型,这个方案都能使用。在这种情况下,在节点从列表中删除前,你就不得不将有可能抛出异常的代码,放在锁保护的范围内,来保证异常安全性。这也就意味着你需要对pop_head()进行重载,查找索引值在列表改动前的位置。

相比之下,empty()就更加的简单:只需要锁住head_mutex,并且检查head==get_tail()(详见清单6.10)就可以了。最终的代码,在清单6.7,6.8,6.9和6.10中。

清单6.7 可上锁和等待的线程安全队列——内部机构及接口

template<typename T>
class threadsafe_queue
{
private:
  struct node
  {
   std::shared_ptr<T> data;
   std::unique_ptr<node> next;
  };
  std::mutexhead_mutex;
  std::unique_ptr<node> head;
  std::mutextail_mutex;
  node* tail;
  std::condition_variable data_cond;
public:
  threadsafe_queue():head(new node),tail(head.get()){}
  threadsafe_queue(const threadsafe_queue& other)=delete;
  threadsafe_queue& operator=(const threadsafe_queue&other)=delete;
  std::shared_ptr<T> try_pop();
  booltry_pop(T& value);
  std::shared_ptr<T> wait_and_pop();
  voidwait_and_pop(T& value);
  void push(Tnew_value);
  void empty();
};

向队列中添加新节点是相当简单的——下面的实现与上面的代码差不多。

清单6.8 可上锁和等待的线程安全队列——推入新节点

template<typename T>
void threadsafe_queue<T>::push(T new_value)
{
  std::shared_ptr<T> new_data(
  std::make_shared<T>(std::move(new_value)));
  std::unique_ptr<node> p(new node);
  {
    std::lock_guard<std::mutex>tail_lock(tail_mutex);
    tail->data=new_data;
    node*const new_tail=p.get();
    tail->next=std::move(p);
    tail=new_tail;
  }
  data_cond.notify_one();
}

如同之前所提到的,复杂部分都在pop那边,所以提供帮助性函数去简化这部分就很重要了。下一个清单中将展示wait_and_pop()的实现,以及先关的帮助函数。

清单6.9 可上锁和等待的线程安全队列——wait_and_pop()

template<typename T>
class threadsafe_queue
{
private:
  node*get_tail()
  {
    std::lock_guard<std::mutex> tail_lock(tail_mutex);
    return tail;
  }
  std::unique_ptr<node> pop_head() //** 1**
  {
    std::unique_ptr<node>old_head=std::move(head);
    head=std::move(old_head->next);
    return old_head;
  }
  std::unique_lock<std::mutex> wait_for_data()  //** 2**
  {
    std::unique_lock<std::mutex> head_lock(head_mutex);
    data_cond.wait(head_lock,[&]{return head.get()!=get_tail();});
    return std::move(head_lock);  //** 3**
  }
  std::unique_ptr<node> wait_pop_head()
  {
    std::unique_lock<std::mutex> head_lock(wait_for_data());  // **4**
    return pop_head();
  }
  std::unique_ptr<node> wait_pop_head(T& value)
  {
     std::unique_lock<std::mutex> head_lock(wait_for_data());  // **5**
     value=std::move(*head->data);
     return pop_head();
  }
public:
 std::shared_ptr<T> wait_and_pop()
  {
     std::unique_ptr<node> const old_head=wait_pop_head();
     return old_head->data;
  }
  void wait_and_pop(T& value)
  {
     std::unique_ptr<node> const old_head=wait_pop_head(value);
  }
};

清单6.9中所示的pop部分的实现中有一些帮助函数来降低代码的复杂度,例如pop_head()①和wait_for_data()②,这些函数分别是删除头结点和等待队列中有数据弹出的。wait_for_data()特别值得关注,因为其不仅等待使用lambda函数对条件变量进行等待,而且它还会将锁的实例返回给调用者③。这就需要确保同一个锁在执行与wait_pop_head()重载④⑤的相关操作时,已持有锁。pop_head()是对try_pop()代码的复用,将在下面进行展示:

清单6.10 可上锁和等待的线程安全队列——try_pop()和empty()

template<typename T>
class threadsafe_queue
{
private:
 std::unique_ptr<node> try_pop_head()
  {
   std::lock_guard<std::mutex> head_lock(head_mutex);
   if(head.get()==get_tail())
    {
      return std::unique_ptr<node>();
    }
    returnpop_head();
  }
  std::unique_ptr<node> try_pop_head(T& value)
  {
    std::lock_guard<std::mutex> head_lock(head_mutex);
    if(head.get()==get_tail())
    {
      return std::unique_ptr<node>();
    }
    value=std::move(*head->data);
    return pop_head();
  }
public:
  std::shared_ptr<T> try_pop()
  {
    std::unique_ptr<node> old_head=try_pop_head();
    return old_head?old_head->data:std::shared_ptr<T>();
  }
  bool try_pop(T& value)
  {
   std::unique_ptr<node> const old_head=try_pop_head(value);
    return old_head;
  }
  void empty()
  {
   std::lock_guard<std::mutex> head_lock(head_mutex);
    return(head.get()==get_tail());
  }
};

这个队列的实现将作为第7章无锁队列的基础。这是一个无界(unbounded)队列;线程可以持续向队列中添加数据项,即使没有元素被删除。与之相反的就是有界(bounded)队列,在有界队列中,队列在创建的时候最大长度就已经是固定的了。当有界队列满载时,尝试在向其添加元素的操作将会失败或者阻塞,直到有元素从队列中弹出。在任务执行时(详见第8章),有界队列对于线程间的工作花费是很有帮助的。其会阻止线程对队列进行填充,并且可以避免线程从较远的地方对数据项进行索引。

无界队列的实现,很容易扩展成,可在push()中等待跳进变量的定长队列。相对于等待队列中具有数据项(pop()执行完成后),你就需要等待队列中数据项小于最大值就可以了。对于有界队列更多的讨论,已经超出了本书的范围,就不再多说;现在越过队列,向更加复杂的数据结构进发。

6.3 基于锁设计更加复杂的数据结构

栈和队列都很简单:接口相对固定,并且它们应用于比较特殊的情况。并不是所有数据结构都像它们一样简单;大多数数据结构支持更加多样化的操作。原则上,这将增大并行的可能性,但是也让对数据保护变得更加困难,因为要考虑对所有能访问到的部分。当为了并发访问对数据结构进行设计时,这一系列原有的操作,就变得越发重要,需要重点处理。

先来看看,在查询表的设计中,所遇到的一些问题。

6.3.1 编写一个使用锁的线程安全查询表

查询表或字典是一种类型的值(键值)和另一种类型的值进行关联(映射的方式)。一般情况下,这样的结构允许代码通过键值对相关的数据值进行查询。在C++标准库中,这种相关工具有:std::map<>,std::multimap<>, std::unordered_map<>以及std::unordered_multimap<>。

查询表的使用与栈和队列不同。栈和队列上,几乎每个操作都会对数据结构进行修改,不是添加一个元素,就是删除一个,而对于查询表来说,几乎不需要什么修改。清单3.13中有个例子,是一个简单的域名系统(DNS)缓存,其特点是,相较于std::map<>削减了很多的接口。和队列和栈一样,标准容器的接口不适合多线程进行并发访问,因为这些接口在设计的时候都存在固有的条件竞争,所以这些接口需要砍掉,以及重新修订。

并发访问时,std::map<>接口最大的问题在于——迭代器。虽然,在多线程访问(或修改)容器时,可能会有提供安全访问的迭代器,但这就问题棘手之处。要想正确的处理迭代器,你可能会碰到下面这个问题:当迭代器引用的元素被其他线程删除时,迭代器在这里就是个问题了。线程安全的查询表,第一次接口削减,需要绕过迭代器。std::map<>(以及标准库中其他相关容器)给定的接口对于迭代器的依赖是很严重的,其中有些接口需要先放在一边,先对一些简单接口进行设计。

查询表的基本操作有:

· 添加一对“键值-数据”

· 修改指定键值所对应的数据

· 删除一组值

· 通过给定键值,获取对应数据

容器也有一些操作是非常有用的,比如:查询容器是否为空,键值列表的完整快照和“键值-数据”的完整快照。

如果你坚持之前的线程安全指导意见,例如:不要返回一个引用,并且用一个简单的互斥锁对每一个成员函数进行上锁,以确保每一个函数线程安全。最有可能的条件竞争在于,当一对“键值-数据”加入时;当两个线程都添加一个数据,那么肯定一个先一个后。一种方式是合并“添加”和“修改”操作,为一个成员函数,就像清单3.13对域名系统缓存所做的那样。

从接口角度看,有一个问题很是有趣,那就是任意(if any)部分获取相关数据。一种选择是允许用户提供一个“默认”值,在键值没有对应值的时候进行返回:

mapped_type get_value(key_type const& key,mapped_type default_value);

在种情况下,当default_value没有明确的给出时,默认构造出的mapped_type实例将被使用。也可以扩展成返回一个std::pair来代替mapped_type实例,其中bool代表返回值是否是当前键对应的值。另一个选择是,返回一个有指向数据的智能指针;当指针的值是NULL时,那么这个键值就没有对应的数据。

如我们之前所提到的,当接口确定时,那么(假设没有接口间的条件竞争)就需要保证线程安全了,可以通过对每一个成员函数使用一个互斥量和一个简单的锁,来保护底层数据。不过,当独立的函数对数据结构进行读取和修改时,就会降低并发的可能性。一个选择是使用一个互斥量去面对多个读者线程,或一个作者线程,如同在清单3.13中对boost::shared_mutex的使用一样。虽然,这将提高并发访问的可能性,但是在同一时间内,也只有一个线程能对数据结构进行修改。理想很美好,现实很骨感?我们应该能做的更好!

为细粒度锁设计一个映射结构

在对队列的讨论中(在6.2.3节),为了允许细粒度锁能正常工作,需要对于数据结构的细节进行仔细的考虑,而非直接使用已存在的容器,例如std::map<>。这里列出三个常见关联容器的方式:

· 二叉树,比如:红黑树

· 有序数组

· 哈希表

二叉树的方式,不会对提高并发访问的概率;每一个查找或者修改操作都需要访问根节点,因此,根节点需要上锁。虽然,访问线程在向下移动时,这个锁可以进行释放,但相比横跨整个数据结构的单锁,并没有什么优势。

有序数组是最坏的选择,因为你无法提前言明数组中哪段是有序的,所以你需要用一个锁将整个数组锁起来。

那么就剩哈希表了。假设有固定数量的桶,每个桶都有一个键值(关键特性),以及散列函数。这就意味着你可以安全的对每个桶上锁。当你再次使用互斥量(支持多读者单作者)时,你就能将并发访问的可能性增加N倍,这里N是桶的数量。当然,缺点也是有的:对于键值的操作,需要有合适的函数。C++标准库提供std::hash<>模板,可以直接使用。对于特化的类型,比如int,以及通用库类型std::string,并且用户可以简单的对键值类型进行特化。如果你去效仿标准无序容器,并且获取函数对象的类型作为哈希表的模板参数,用户可以选择是否特化std::hash<>的键值类型,或者提供一个独立的哈希函数。

那么,让我们来看一些代码吧。怎样的实现才能完成一个线程安全的查询表?下面就是一种方式。

清单6.11 线程安全的查询表

template<typename Key,typename Value,typenameHash=std::hash<Key> >
class threadsafe_lookup_table
{
private:
  class bucket_type
  {
  private:
    typedef std::pair<Key,Value> bucket_value;
    typedef std::list<bucket_value> bucket_data;
    typedef typename bucket_data::iterator bucket_iterator;
    bucket_data data;
    mutable boost::shared_mutex mutex;  // **1**
    bucket_iterator find_entry_for(Key const& key) const  // **2**
    {
        return std::find_if(data.begin(),data.end(), [&](bucket_value const&item){return item.first==key;});
    }
  public:
    Value value_for(Key const& key,Value const& default_value) const
    {
       boost::shared_lock<boost::shared_mutex> lock(mutex);  //** 3**
       bucket_iterator const found_entry=find_entry_for(key);
       return(found_entry==data.end())?default_value:found_entry->second;
    }
    void add_or_update_mapping(Key const& key,Value const& value)
    {
       std::unique_lock<boost::shared_mutex> lock(mutex);  // **4**
       bucket_iterator const found_entry=find_entry_for(key);
       if(found_entry==data.end())
       {
         data.push_back(bucket_value(key,value));
      }
      else
      {
         found_entry->second=value;
      }
    }
    void remove_mapping(Key const& key)
    {
       std::unique_lock<boost::shared_mutex> lock(mutex);  //** 5**
       bucket_iterator const found_entry=find_entry_for(key);
       if(found_entry!=data.end())
       {
           data.erase(found_entry);
       }
    }
  };
  std::vector<std::unique_ptr<bucket_type> > buckets;  //** 6**
  Hash hasher;
  bucket_type& get_bucket(Key const&key) const  // **7**
  {
     std::size_t const bucket_index=hasher(key)%buckets.size();
     return *buckets[bucket_index];
  }
public:
  typedef Key key_type;
  typedef Value mapped_type;
  typedef Hash hash_type;
  threadsafe_lookup_table(unsignednum_buckets=19,Hash const& hasher_=Hash()):
  buckets(num_buckets),hasher(hasher_)
  {
   for(unsigned i=0;i<num_buckets;++i)
    {
       buckets[i].reset(new bucket_type);
    }
  }
 threadsafe_lookup_table(threadsafe_lookup_table const&other)=delete;
 threadsafe_lookup_table& operator=(threadsafe_lookup_tableconst& other)=delete;
  Value value_for(Key const& key,Value const& default_value=Value()) const
  {
    return get_bucket(key).value_for(key,default_value); //** 8**
  }
  void add_or_update_mapping(Key const& key,Value const& value)
  {
     get_bucket(key).add_or_update_mapping(key,value);  //** 9**=
  }
  void remove_mapping(Key const& key)
  {
     get_bucket(key).remove_mapping(key); // **10**
  }
};

这个实现中使用了std::vector>⑥来保存桶,其允许在构造函数中指定构造桶的数量。默认为19个,其是一个任意的质数;哈希表在有质数个桶时,工作效率最高。每一个桶都会被一个boost::shared_mutex①实例锁保护,来允许并发读取,或对每一个桶,只有一个线程对其进行修改。

因为桶的数量是固定的,所以get_bucket()⑦可以无锁调用,⑧⑨⑩也都一样。并且对桶的互斥量上锁,要不就是共享(只读)所有权的时候③,要不就是在获取唯一(读/写)权的时候④⑤。这里的互斥量,可适用于每个成员函数。

这三个函数都使用到了find_entry_for()成员函数②,在桶上用来确定数据是否在桶中。每一个桶都包含一个“键值-数据”的std::list<>列表,所以添加和删除数据,就会很简单。

已经从并发的角度考虑了,并且所有成员都会被互斥锁保护,所以这样的实现就是“异常安全”的吗?value_for是不能修改任何值的,所以其不会有问题;如果value_for抛出异常,也不会对数据结构有任何影响。remove_mapping修改链表时,将会调用erase,不过这就能保证没有异常抛出,那么这里也是安全的。那么就剩add_or_update_mapping了,其可能会在其两个if分支上抛出异常。push_back是异常安全的,如果有异常抛出,其也会将链表恢复成原来的状态,所以这个分支是没有问题的。唯一的问题就是在赋值阶段,这将替换已有的数据;当复制阶段抛出异常,用于原依赖的始状态没有改变。不过,这不会影响数据结构的整体,以及用户提供类型的属性,所以你可以放心的将问题交给用户处理。

在本节开始时,我提到查询表的一个“可有可无”(nice-to-have)的特性,会将选择当前状态的快照,例如,一个std::map<>。这将要求锁住整个容器,用来保证拷贝副本的状态是可以索引的,这将要求锁住所有的桶。因为对于查询表的“普通”的操作,需要在同一时间获取一个桶上的一个锁,而这个操作将要求查询表将所有桶都锁住。因此,只要每次以相同的顺序进行上锁(例如,递增桶的索引值),就不会产生死锁。实现如下所示:

清单6.12 获取整个threadsafe_lookup_table作为一个std::map<>

std::map<Key,Value>threadsafe_lookup_table::get_map() const
{
  std::vector<std::unique_lock<boost::shared_mutex> > locks;
  for(unsignedi=0;i<buckets.size();++i)
  {
     locks.push_back(std::unique_lock<boost::shared_mutex>(buckets[i].mutex));
  }
   std::map<Key,Value> res;
   for(unsignedi=0;i<buckets.size();++i)
   {
       for(bucket_iteratorit=buckets[i].data.begin();it!=buckets[i].data.end();++it)
       {
         res.insert(*it);
       }
    }
  return res;
}

清单6.11中的查询表实现,就增大的并发访问的可能性,这个查询表作为一个整体,通过单独的操作,对每一个桶进行锁定,并且通过使用boost::shared_mutex允许读者线程对每一个桶进行并发访问。如果细粒度锁和哈希表结合起来,会更有效的增加并发的可能性吗?

在下一节中,你将使用到一个线程安全列表(支持迭代器)。

6.3.2 编写一个使用锁的线程安全链表

链表类型是数据结构中的一个基本类型,所以应该是比较好修改成线程安全的,对么?其实这取决于你要添加什么样的功能,这其中需要你提供迭代器的支持。为了让基本数据类型的代码不会太复杂,我去掉了一些功能。迭代器的问题在于,STL类的迭代器需要持有容器内部属于的引用。当容器可被其他线程修改时,有时这个引用还是有效的;实际上,这里就需要迭代器持有锁,对指定的结构中的部分进行上锁。在给定STL类迭代器的生命周期中,让其完全脱离容器的控制是很糟糕的。

替代方案就是提供迭代函数,例如,将for_each作为容器本身的一部分。这就能让容器来对迭代的部分进行负责和锁定,不过这将违反第3章指导意见对避免死锁建议。为了让for_each在任何情况下都有用,在其持有内部锁的时候,必须调用用户提供的代码。不仅如此,而且需要传递一个对容器中元素的引用到用户代码中,为的就是让用户代码对容器中的元素进行操作。你可以为了避免传递引用,而传出一个拷贝到用户代码中;不过当数据很大时,拷贝所要付出的代价也很大。

所以,可以将避免死锁的工作(因为用户提供的操作需要获取内部锁),还有避免对引用(不被锁保护)进行存储时的条件竞争,交给用户去做。这样的链表就可以被查询表所使用了,这样很安全,因为你知道这里的实现不会有任何问题。

那么剩下的问题就是哪些操作需要列表所提供。如果你愿在花点时间看一下清单6.11和6.12中的代码,你会看到下面这些操作是需要的:

· 向列表添加一个元素

· 当某个条件满足时,就从链表中删除某个元素

· 当某个条件满足时,从链表中查找某个元素

· 当某个条件满足时,更新链表中的某个元素

· 将当前容器中链表中的每个元素,复制到另一个容器中

提供了这些操作,我们的链表才能是一个比较好的通用容器,这将帮助我们添加更多功能,比如,在指定位置上插入元素,不过这对于我们查询表来说就没有必要了,所以这里就算是给读者们留的一个作业吧。

使用细粒度锁最初的想法,是为了让链表每个节点都拥有一个互斥量。当链表很长时,那么就会有很多的互斥量!这样的好处是对于链表中每一个独立的部分,都能实现真实的并发:其真正感兴趣的是对持有的节点群进行上锁,并且在移动到下一个节点的时,对当前节点进行释放。下面的清单中将展示这样的一个链表实现。

清单6.13 线程安全链表——支持迭代器

template<typename T>
class threadsafe_list
{
  struct node  //** 1**
  {
    std::mutexm;
    std::shared_ptr<T> data;
    std::unique_ptr<node> next;
    node(): next(){}//** 2**
    node(Tconst& value): data(std::make_shared<T>(value)){} //** 3** 
  };
  node head;
public:
 threadsafe_list(){}
 ~threadsafe_list()
  {
    remove_if([](node const&){return true;});
  }
 threadsafe_list(threadsafe_list const& other)=delete;
 threadsafe_list& operator=(threadsafe_list const& other)=delete;
 void push_front(T const& value)
  {
    std::unique_ptr<node> new_node(new node(value));  // **4**
    std::lock_guard<std::mutex> lk(head.m);
    new_node->next=std::move(head.next); // **5**
    head.next=std::move(new_node);  //**6**
  }
  template<typename Function>
  void for_each(Function f)  //** 7**
  {
    node*current=&head;
    std::unique_lock<std::mutex> lk(head.m);  //** 8**
    while(node* const next=current->next.get())  //** 9**
    {
      std::unique_lock<std::mutex> next_lk(next->m);  // **10**
      lk.unlock();  // **11**
      f(*next->data);  // **12**
      current=next;
      lk=std::move(next_lk);  //** 13**
    }
  }
 template<typename Predicate>
 std::shared_ptr<T> find_first_if(Predicate p)  // **14**
  {
    node*current=&head;
    std::unique_lock<std::mutex> lk(head.m);
    while(node* const next=current->next.get())
    {
      std::unique_lock<std::mutex> next_lk(next->m);
      lk.unlock();
      if(p(*next->data))  // **15**
      {
         return next->data;  // **16**
      }
      current=next;
      lk=std::move(next_lk);
    }
     return std::shared_ptr<T>();
  }
  template<typename Predicate>
  void remove_if(Predicate p)  // **17**
  {
    node*current=&head;
    std::unique_lock<std::mutex> lk(head.m);
    while(node* const next=current->next.get())
    {
      std::unique_lock<std::mutex> next_lk(next->m);
      if(p(*next->data))  // **18**
      {
         std::unique_ptr<node> old_next=std::move(current->next);
         current->next=std::move(next->next);
         next_lk.unlock();
      }  // **20**
      else
      {
        lk.unlock();  // **21**
        current=next;
        lk=std::move(next_lk);
      }
    }
  }
};

清单6.13中的threadsafe_list<>是一个单链表,可从node的结构①中看出。一个默认构造的node,作为链表的head,其next指针②指向的是NULL。新节点都是被push_front()函数添加进去的;构造第一个新节点④,其将会在堆上分配内存③来对数据进行存储,同时将next指针置为NULL。然后,你需要获取head节点的互斥锁,为了让设置next的值⑤,也就是插入节点到列表的头部,让头节点的head.next指向这个新节点⑥。目前,还没有什么问题:你只需要锁住一个互斥量,就能将一个新的数据添加进入链表,所以这里不存在死锁的问题。同样,(缓慢的)内存分配操作在锁的范围外,所以锁能保护需要更新的一对指针。那么,现在来看一下迭代功能。

首先,来看一下for_each()⑦。这个操作需要对队列中的每个元素执行Function(函数指针);在大多数标准算法库中,都会通过传值方式来执行这个函数,这里要不就传入一个通用的函数,要不就传入一个有函数操作的类型对象。在这种情况下,这个函数必须接受类型为T的值作为参数。在链表中,会有一个“手递手”的上锁过程。在这个过程开始时,你需要锁住head及节点⑧的互斥量。然后,安全的获取指向下一个节点的指针(使用get()获取,这是因为你对这个指针没有所有权)。当指针不为NULL⑨,为了继续对数据进行处理,就需要对指向的节点进行上锁⑩。当你已经锁住了那个节点,就可以对上一个节点进行释放了⑪,并且调用指定函数⑫。当函数执行完成时,你就可以更新当前指针所指向的节点(刚刚处理过的节点),并且将所有权从next_lk移动移动到lk⑬。因为for_each传递的每个数据都是能被Function接受的,所以当需要的时,需要拷贝到另一个容器的时,或其他情况时,你都可以考虑使用这种方式更新每个元素。如果函数的行为没什么问题,这种方式是完全安全的,因为在获取节点互斥锁时,已经获取锁的节点正在被函数所处理。

find_first_if()⑭和for_each()很相似;最大的区别在于find_first_if支持函数(谓词)在匹配的时候返回true,在不匹配的时候返回false⑮。当条件匹配,只需要返回找到的数据⑯,而非继续查找。你可以使用for_each()来做这件事,不过在找到之后,继续做查找就是没有意义的了。

remove_if()⑰就有些不同了,因为这个函数会改变链表;所以,你就不能使用for_each()来实现这个功能。当函数(谓词)返回true⑱,对应元素将会移除,并且更新current->next⑲。当这些都做完,你就可以释放next指向节点的锁。当std::unique_ptr的移动超出链表范围⑳,这个节点将被删除。这种情况下,你就不需要更新当前节点了,因为你只需要修改next所指向的下一个节点就可以。当函数(谓词)返回false,那么移动的操作就和之前一样了(21)。

那么,所有的互斥量中会有死锁或条件竞争吗?答案无疑是“否”,这里要看提供的函数(谓词)是否有良好的行为。迭代通常都是使用一种方式,都是从head节点开始,并且在释放当前节点锁之前,将下一个节点的互斥量锁住,所以这里就不可能会有不同线程有不同的上锁顺序。唯一可能出现条件竞争的地方就是在remove_if()⑳中删除已有节点的时候。因为,这个操作在解锁互斥量后进行(其导致的未定义行为,可对已上锁的互斥量进行破坏)。不过,在考虑一阵后,可以确定这的确是安全的,因为你还持有前一个节点(当前节点)的互斥锁,所以不会有新的线程尝试去获取你正在删除的那个节点的互斥锁。

这里并发概率有多大呢?细粒度锁要比单锁的并发概率大很多,那我们已经获得了吗?是的,你已经获取了:同一时间内,不同线程可以在不同节点上工作,无论是其使用for_each()对每一个节点进行处理,使用find_first_if()对数据进行查找,还是使用remove_if()删除一些元素。不过,因为互斥量必须按顺序上锁,那么线程就不能交叉进行工作。当一个线程耗费大量的时间对一个特殊节点进行处理,那么其他线程就必须等待这个处理完成。在完成后,其他线程才能到达这个节点。

6.4 总结

本章开篇,我们讨论了设计并发数据结构的意义,以及给出了一些指导意见。然后,通过设计一些通用的数据结构(栈,队列,哈希表和单链表),探究了在指导意见在实现这些数据结构的应用,并使用锁来保护数据和避免数据竞争。那么现在,你应该回看一下本章实现的那些数据结构,再回顾一下如何增加并发访问的几率,和哪里会存在潜在条件竞争。

在第7章中,我们将看一下如何避免锁完全锁定,使用底层原子操作来提供必要访问顺序约束,并给出一些指导意见。

相关文章
|
6月前
|
存储 C++ 索引
c++数据结构
c++数据结构
51 3
|
3月前
|
安全 编译器 C语言
【C++数据结构】string的模拟实现
【C++数据结构】string的模拟实现
|
5月前
|
缓存 安全 Java
全面解读ConcurrentHashMap:Java中的高效并发数据结构
全面解读ConcurrentHashMap:Java中的高效并发数据结构
1689 2
|
2月前
|
Linux API C++
超级好用的C++实用库之互斥锁
超级好用的C++实用库之互斥锁
29 2
|
2月前
|
并行计算 安全 调度
C++ 11新特性之并发
C++ 11新特性之并发
82 0
|
4月前
|
C++ 运维
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
68 2
|
4月前
|
存储 数据格式 运维
开发与运维C++问题之更改数据模型为通用数据结构如何解决
开发与运维C++问题之更改数据模型为通用数据结构如何解决
29 1
|
4月前
|
安全 程序员 C++
C++一分钟之-C++中的并发容器
【7月更文挑战第17天】C++11引入并发容器,如`std::shared_mutex`、`std::atomic`和线程安全的集合,以解决多线程中的数据竞争和死锁。常见问题包括原子操作的误用、锁的不当使用和迭代器失效。避免陷阱的关键在于正确使用原子操作、一致的锁管理以及处理迭代器失效。通过示例展示了如何安全地使用这些工具来提升并发编程的安全性和效率。
61 1
|
5月前
|
安全 C++
C++一分钟之-互斥锁与条件变量
【6月更文挑战第26天】在C++并发编程中,`std::mutex`提供互斥访问,防止数据竞争,而`std::condition_variable`用于线程间的同步协调。通过`lock_guard`和`unique_lock`防止忘记解锁,避免死锁。条件变量需配合锁使用,确保在正确条件下唤醒线程,注意虚假唤醒和无条件通知。生产者-消费者模型展示了它们的应用。正确使用这些工具能解决同步问题,提升并发性能和可靠性。
63 4
|
5月前
|
存储 算法 程序员
【C++进阶】深入STL之 栈与队列:数据结构探索之旅
【C++进阶】深入STL之 栈与队列:数据结构探索之旅
56 4

热门文章

最新文章

相关实验场景

更多