Mysql系列-5.Mysql分库分表(中)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Mysql系列-5.Mysql分库分表

Mysql系列-5.Mysql分库分表(上):https://developer.aliyun.com/article/1414267


server.xml


server.xml配置文件包含了MyCat的系统配置信息,主要有两个重要的标签:system、user。


1). system标签

主要配置MyCat中的系统配置信息,对应的系统配置项及其含义,如下:

属性 取值 含义
charset utf8 设置Mycat的字符集, 字符集需要与MySQL的字符集保持一致
nonePasswordLogin 0,1 0为需要密码登陆、1为不需要密码登陆 ,默认为0,设置为1则需要指定默认账户
useHandshakeV10 0,1 使用该选项主要的目的是为了能够兼容高版本的jdbc驱动, 是否采用HandshakeV10Packet来与client进行通信, 1:是, 0:否

useSqlStat

0,1

开启SQL实时统计, 1 为开启 , 0 为关闭 ;开启之后, MyCat会自动统计SQL语句的执行情况 ; mysql -h 127.0.0.1 -P 9066-u root -p 查看MyCat执行的SQL, 执行效率比较低的SQL , SQL的整体执行情况、读写比例等 ; show @@sql ; show @@sql.slow ; show @@sql.sum ;

useGlobleTableCheck 0,1 是否开启全局表的一致性检测。1为开启 ,0为关闭 。
sqlExecuteTimeout 1000 SQL语句执行的超时时间 , 单位为 s ;
sequnceHandlerType 0,1,2 用来指定Mycat全局序列类型,0 为本地文件,1 为数据库方式,2 为时间戳列方式,默认使用本地文件方式,文件方式主要用于测试
sequnceHandlerPattern 正则表达式
subqueryRelationshipCheck true,false 子查询中存在关联查询的情况下,检查关联字段中是否有分片字段 .默认 false
useCompression 0,1 开启mysql压缩协议 , 0 : 关闭, 1 : 开启
fakeMySQLVersion 5.5,5.6 设置模拟的MySQL版本号

defaultSqlParser


由于MyCat的最初版本使用了FoundationDB的SQL解析器, 在MyCat1.3后增加了Druid解析器, 所以要设置defaultSqlParser属性来指定默认的解析器; 解析器有两个 :druidparser 和 fdbparser, 在MyCat1.4之后,默认是druidparser,fdbparser已经废除

processors

1,2…

指定系统可用的线程数量, 默认值为CPU核心x 每个核心运行线程数量; processors 会影响processorBufferPool,processorBufferLocalPercent,processorExecutor属性, 所有, 在性能调优时, 可以适当地修改processors值

processorBufferChunk 指定每次分配Socket Direct Buffer默认值为4096字节, 也会影响BufferPool长度,如果一次性获取字节过多而导致buffer不够则会出现警告, 可以调大该值
processorExecutor
packetHeaderSize 指定MySQL协议中的报文头长度, 默认4个字节
maxPacketSize 指定MySQL协议可以携带的数据最大大小, 默认值为16M
idleTimeout 指定连接的空闲时间的超时长度;如果超时,将关闭资源并回收, 默认30分钟

txIsolation


初始化前端连接的事务隔离级别,默认为REPEATED_READ , 对应数字为3READ_UNCOMMITED=1;READ_COMMITTED=2; REPEATED_READ=3;SERIALIZABLE=4;

sqlExecuteTimeout 执行SQL的超时时间, 如果SQL语句执行超时,将关闭连接; 默认300秒;
serverPort 定义MyCat的使用端口, 默认8066
managerPort 定义MyCat的管理端口, 默认9066

2). user标签


配置MyCat中的用户、访问密码,以及用户针对于逻辑库、逻辑表的权限信息,具体的权限描述方式及配置说明如下:

在测试权限操作时,我们只需要将 privileges 标签的注释放开。 在 privileges 下的schema标签中配置的dml属性配置的是逻辑库的权限。 在privileges的schema下的table标签的dml属性中配置逻辑表的权限。


MyCat分片


垂直拆分


场景


在业务系统中, 涉及以下表结构 ,但是由于用户与订单每天都会产生大量的数据, 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分, 原有的数据库表如下。

现在考虑将其进行垂直分库操作,将商品相关的表拆分到一个数据库服务器,订单表拆分的一个数据库服务器,用户及省市区表拆分到一个服务器。最终结构如下:


准备


准备三台服务器,IP地址如图所示:

并且在192.168.200.210,192.168.200.213, 192.168.200.214上面创建数据库shopping。


配置


1). schema.xml

<schema name="SHOPPING" checkSQLschema="true" sqlMaxLimit="100">
    <table name="tb_goods_base" dataNode="dn1" primaryKey="id" />
    <table name="tb_goods_brand" dataNode="dn1" primaryKey="id" />
    <table name="tb_goods_cat" dataNode="dn1" primaryKey="id" />
    <table name="tb_goods_desc" dataNode="dn1" primaryKey="goods_id" />
    <table name="tb_goods_item" dataNode="dn1" primaryKey="id" />
    <table name="tb_order_item" dataNode="dn2" primaryKey="id" />
    <table name="tb_order_master" dataNode="dn2" primaryKey="order_id" />
    <table name="tb_order_pay_log" dataNode="dn2" primaryKey="out_trade_no" />
    <table name="tb_user" dataNode="dn3" primaryKey="id" />
    <table name="tb_user_address" dataNode="dn3" primaryKey="id" />
    <table name="tb_areas_provinces" dataNode="dn3" primaryKey="id"/>
    <table name="tb_areas_city" dataNode="dn3" primaryKey="id"/>
    <table name="tb_areas_region" dataNode="dn3" primaryKey="id"/>
</schema>
<dataNode name="dn1" dataHost="dhost1" database="shopping" />
<dataNode name="dn2" dataHost="dhost2" database="shopping" />
<dataNode name="dn3" dataHost="dhost3" database="shopping" />
<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
  <heartbeat>select user()</heartbeat>
  <writeHost host="master" url="jdbc:mysql://192.168.200.210:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="1234" />
</dataHost>
<dataHost name="dhost2" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
  <heartbeat>select user()</heartbeat>
  <writeHost host="master" url="jdbc:mysql://192.168.200.213:3306?
useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="1234" />
</dataHost>
<dataHost name="dhost3" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
  <heartbeat>select user()</heartbeat>
  <writeHost host="master" url="jdbc:mysql://192.168.200.214:3306?
useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="1234" />
</dataHost>

2). server.xml

<user name="root" defaultAccount="true">
    <property name="password">123456</property>
    <property name="schemas">SHOPPING</property>
    <!-- 表级 DML 权限设置 -->
    <!--
    <privileges check="true">
      <schema name="DB01" dml="0110" >
        <table name="TB_ORDER" dml="1110"></table>
      </schema>
    </privileges>
  -->
</user>
<user name="user">
    <property name="password">123456</property>
    <property name="schemas">SHOPPING</property>
    <property name="readOnly">true</property>
</user>


测试


1). 上传测试SQL脚本到服务器的/root目录

2). 执行指令导入测试数据


重新启动MyCat后,在mycat的命令行中,通过source指令导入表结构,以及对应的数据,查看数据分布情况。

source /root/shopping-table.sql
source /root/shopping-insert.sql

将表结构及对应的测试数据导入之后,可以检查一下各个数据库服务器中的表结构分布情况。 检查是否和我们准备工作中规划的服务器一致。

3). 查询用户的收件人及收件人地址信息(包含省、市、区)。


在MyCat的命令行中,当我们执行以下多表联查的SQL语句时,可以正常查询出数据。(同一个库中进行操作)

select ua.user_id, ua.contact, p.province, c.city, r.area , ua.address from
tb_user_address ua ,tb_areas_city c , tb_areas_provinces p ,tb_areas_region r
where ua.province_id = p.provinceid and ua.city_id = c.cityid and ua.town_id =
r.areaid ;

4). 查询每一笔订单及订单的收件地址信息(包含省、市、区)。


实现该需求对应的SQL语句如下:

SELECT order_id , payment ,receiver, province , city , area FROM tb_order_master o
, tb_areas_provinces p , tb_areas_city c , tb_areas_region r WHERE
o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND
o.receiver_region = r.areaid ;

但是现在存在一个问题,订单相关的表结构是在 192.168.200.213 数据库服务器中,而省市区的数据库表是在 192.168.200.214 数据库服务器中。那么在MyCat中执行是否可以成功呢?

经过测试,我们看到,SQL语句执行报错。原因就是因为MyCat在执行该SQL语句时,需要往具体的数据库服务器中路由,而当前没有一个数据库服务器完全包含了订单以及省市区的表结构,造成SQL语句失败,报错。


对于上述的这种现象,我们如何来解决呢? 下面我们介绍的全局表,就可以轻松解决这个问题。


全局表


对于省、市、区/县表tb_areas_provinces , tb_areas_city , tb_areas_region,是属于数据字典表,在多个业务模块中都可能会遇到,可以将其设置为全局表,利于业务操作。


修改schema.xml中的逻辑表的配置,修改 tb_areas_provinces、tb_areas_city、tb_areas_region 三个逻辑表,增加 type 属性,配置为global,就代表该表是全局表,就会在所涉及到的dataNode中创建给表。对于当前配置来说,也就意味着所有的节点中都有该表了。

<table name="tb_areas_provinces" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_city" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_region" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>

配置完毕后,重新启动MyCat。


  • 1). 删除原来每一个数据库服务器中的所有表结构
  • 2). 通过source指令,导入表及数据
source /root/shopping-table.sql
source /root/shopping-insert.sql
  • 3). 检查每一个数据库服务器中的表及数据分布,看到三个节点中都有这三张全局表
  • 4). 然后再次执行上面的多表联查的SQL语句
SELECT order_id , payment ,receiver, province , city , area FROM tb_order_master o
, tb_areas_provinces p , tb_areas_city c , tb_areas_region r WHERE
o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND
o.receiver_region = r.areaid ;

是可以正常执行成功的。


5). 当在MyCat中更新全局表的时候,我们可以看到,所有分片节点中的数据都发生了变化,每个节点的全局表数据时刻保持一致。


水平拆分


场景


在业务系统中, 有一张表(日志表), 业务系统每天都会产生大量的日志数据 , 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分。


准备


准备三台服务器,具体的结构如下:

并且,在三台数据库服务器中分表创建一个数据库itcast。


配置


1). schema.xml

<schema name="ITCAST" checkSQLschema="true" sqlMaxLimit="100">
  <table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
</schema>
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

tb_log表最终落在3个节点中,分别是 dn4、dn5、dn6 ,而具体的数据分别存储在 dhost1、dhost2、dhost3的itcast数据库中。


2). server.xml


配置root用户既可以访问 SHOPPING 逻辑库,又可以访问ITCAST逻辑库。

<user name="root" defaultAccount="true">
    <property name="password">123456</property>
    <property name="schemas">SHOPPING,ITCAST</property>
    <!-- 表级 DML 权限设置 -->
    <!--
    <privileges check="true">
      <schema name="DB01" dml="0110" >
        <table name="TB_ORDER" dml="1110"></table>
      </schema>
    </privileges>
    -->
</user>


测试


配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

CREATE TABLE tb_log (
    id bigint(20) NOT NULL COMMENT 'ID',
    model_name varchar(200) DEFAULT NULL COMMENT '模块名',
    model_value varchar(200) DEFAULT NULL COMMENT '模块值',
    return_value varchar(200) DEFAULT NULL COMMENT '返回值',
    return_class varchar(200) DEFAULT NULL COMMENT '返回值类型',
    operate_user varchar(20) DEFAULT NULL COMMENT '操作用户',
    operate_time varchar(20) DEFAULT NULL COMMENT '操作时间',
    param_and_value varchar(500) DEFAULT NULL COMMENT '请求参数名及参数值',
    operate_class varchar(200) DEFAULT NULL COMMENT '操作类',
    operate_method varchar(200) DEFAULT NULL COMMENT '操作方法',
    cost_time bigint(20) DEFAULT NULL COMMENT '执行方法耗时, 单位 ms',
    source int(1) DEFAULT NULL COMMENT '来源 : 1 PC , 2 Android , 3 IOS',
    PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('1','user','insert','success','java.lang.String','10001','2022-01-06
18:12:28','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','insert','10',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('2','user','insert','success','java.lang.String','10001','2022-01-06
18:12:27','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','insert','23',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('3','user','update','success','java.lang.String','10001','2022-01-06
18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','update','34',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('4','user','update','success','java.lang.String','10001','2022-01-06
18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.contro
ller.UserController','update','13',2);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('5','user','insert','success','java.lang.String','10001','2022-01-06
18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.co
ntroller.UserController','insert','29',3);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,
operate_user, operate_time, param_and_value, operate_class, operate_method,
cost_time,source)
VALUES('6','user','find','success','java.lang.String','10001','2022-01-06
18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.co
ntroller.UserController','find','29',2);


分片规则


范围分片


1). 介绍


根据指定的字段及其配置的范围与数据节点的对应情况, 来决定该数据属于哪一个分片。

2). 配置


schema.xml逻辑表配置:

<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />

schema.xml数据节点配置:

<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />

rule.xml分片规则配置:

<tableRule name="auto-sharding-long">
  <rule>
    <columns>id</columns>
    <algorithm>rang-long</algorithm>
  </rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
    <property name="mapFile">autopartition-long.txt</property>
    <property name="defaultNode">0</property>
</function>

分片规则配置属性含义:

属性 描述
columns 标识将要分片的表字段
algorithm 指定分片函数与function的对应关系
class 指定该分片算法对应的类
mapFile 对应的外部配置文件
type 默认值为0 ; 0 表示Integer , 1 表示String
defaultNode 默认节点 默认节点的所用:枚举分片时,如果碰到不识别的枚举值, 就让它路由到默认节点 ; 如果没有默认值,碰到不识别的则报错 。

含义:0-500万之间的值,存储在0号数据节点(数据节点的索引从0开始) ; 500万-1000万之间的数据存储在1号数据节点 ; 1000万-1500万的数据节点存储在2号节点 ;


该分片规则,主要是针对于数字类型的字段适用。 在MyCat的入门程序中,我们使用的就是该分片规则。


取模分片


1). 介绍


根据指定的字段值与节点数量进行求模运算,根据运算结果, 来决定该数据属于哪一个分片。

2). 配置


schema.xml逻辑表配置:

<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />

schema.xml数据节点配置:

<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml分片规则配置:

<tableRule name="mod-long">
    <rule>
      <columns>id</columns>
      <algorithm>mod-long</algorithm>
    </rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
  <property name="count">3</property>
</function>

分片规则属性说明如下:

属性 描述
columns 标识将要分片的表字段
algorithm 指定分片函数与function的对应关系
class 指定该分片算法对应的类
count 数据节点的数量

该分片规则,主要是针对于数字类型的字段适用。 在前面水平拆分的演示中,我们选择的就是取模分片。


3). 测试


配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。


一致性hash分片


1). 介绍


所谓一致性哈希,相同的哈希因子计算值总是被划分到相同的分区表中,不会因为分区节点的增加而改变原来数据的分区位置,有效的解决了分布式数据的拓容问题。

2). 配置


schema.xml中逻辑表配置:

<!-- 一致性hash -->
<table name="tb_order" dataNode="dn4,dn5,dn6" rule="sharding-by-murmur" />

rule.xml中分片规则配置:

<tableRule name="sharding-by-murmur">
  <rule>
        <columns>id</columns>
        <algorithm>murmur</algorithm>
  </rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
  <property name="seed">0</property><!-- 默认是0 -->
  <property name="count">3</property>
  <property name="virtualBucketTimes">160</property>
</function>

分片规则属性含义:

属性 描述
columns 标识将要分片的表字段
algorithm 指定分片函数与function的对应关系
class 指定该分片算法对应的类
seed 创建murmur_hash对象的种子,默认0
count 要分片的数据库节点数量,必须指定,否则没法分片
virtualBucketTimes 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍;virtualBucketTimes*count就是虚拟结点数量 ;
weightMapFile 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替
bucketMapPath 用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西

在这里面,有两个参数很重要,详细说明一下:


在一致性哈希分片中,虚拟节点数和节点的权重是用来实现负载均衡的重要参数。


  1. 虚拟节点数:为了均衡地将数据分布到各个节点上,通常会为每个实际节点创建多个虚拟节点。虚拟节点数越多,数据分布越均匀,负载也能更加平衡地分散到各个节点上。这样可以避免某个节点成为热点,提高整个系统的性能。
  2. 节点的权重:节点的权重用于调整节点在哈希环上的位置,从而影响数据的分布情况。权重越高的节点在哈希环上的位置越靠近环的顶部,即更有可能被哈希函数选中存储数据。通过设置节点的权重,可以根据节点的性能、资源等情况来进行动态负载均衡。


通过调整虚拟节点数和节点的权重,可以实现较好的负载均衡效果,使得数据在分布式系统中能够更加均匀地存储和访问。这样可以提高系统的性能和可伸缩性,同时减少某个节点的压力,增加系统的容错性。


3). 测试


配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

create table tb_order(
    id varchar(100) not null primary key,
    money int null,
  content varchar(200) null
);
INSERT INTO tb_order (id, money, content) VALUES ('b92fdaaf-6fc4-11ec-b831-
482ae33c4a2d', 10, 'b92fdaf8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93482b6-6fc4-11ec-b831-
482ae33c4a2d', 20, 'b93482d5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b937e246-6fc4-11ec-b831-
482ae33c4a2d', 50, 'b937e25d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93be2dd-6fc4-11ec-b831-
482ae33c4a2d', 100, 'b93be2f9-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93f2d68-6fc4-11ec-b831-
482ae33c4a2d', 130, 'b93f2d7d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9451b98-6fc4-11ec-b831-
482ae33c4a2d', 30, 'b9451bcc-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9488ec1-6fc4-11ec-b831-
482ae33c4a2d', 560, 'b9488edb-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94be6e6-6fc4-11ec-b831-
482ae33c4a2d', 10, 'b94be6ff-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94ee10d-6fc4-11ec-b831-
482ae33c4a2d', 123, 'b94ee12c-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b952492a-6fc4-11ec-b831-
482ae33c4a2d', 145, 'b9524945-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95553ac-6fc4-11ec-b831-
482ae33c4a2d', 543, 'b95553c8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9581cdd-6fc4-11ec-b831-
482ae33c4a2d', 17, 'b9581cfa-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95afc0f-6fc4-11ec-b831-
482ae33c4a2d', 18, 'b95afc2a-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95daa99-6fc4-11ec-b831-
482ae33c4a2d', 134, 'b95daab2-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9667e3c-6fc4-11ec-b831-
482ae33c4a2d', 156, 'b9667e60-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96ab489-6fc4-11ec-b831-
482ae33c4a2d', 175, 'b96ab4a5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96e2942-6fc4-11ec-b831-
482ae33c4a2d', 180, 'b96e295b-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b97092ec-6fc4-11ec-b831-
482ae33c4a2d', 123, 'b9709306-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b973727a-6fc4-11ec-b831-
482ae33c4a2d', 230, 'b9737293-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b978840f-6fc4-11ec-b831-
482ae33c4a2d', 560, 'b978843c-6fc4-11ec-b831-482ae33c4a2d');


Mysql系列-5.Mysql分库分表(下):https://developer.aliyun.com/article/1414329

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
3月前
|
存储 算法 关系型数据库
(二十二)全解MySQL之分库分表后带来的“副作用”一站式解决方案!
上篇《分库分表的正确姿势》中已经将分库分表的方法论全面阐述清楚了,总体看下来用一个字形容,那就是爽!尤其是分库分表技术能够让数据存储层真正成为三高架构,但前面爽是爽了,接着一起来看看分库分表后产生一系列的后患问题,注意我这里的用词,是一系列而不是几个,也就是分库分表虽然好,但你要解决的问题是海量的。
367 3
|
2月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
408 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
6月前
|
NoSQL 关系型数据库 MySQL
实时计算 Flink版操作报错之同步MySQL分库分表500张表报连接超时,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
3月前
|
SQL 算法 Java
(二十六)MySQL分库篇:Sharding-Sphere分库分表框架的保姆级教学!
前面《MySQL主从原理篇》、《MySQL主从实践篇》两章中聊明白了MySQL主备读写分离、多主多写热备等方案,但如果这些高可用架构依旧无法满足业务规模,或业务增长的需要,此时就需要考虑选用分库分表架构。
2508 4
|
3月前
|
存储 SQL 关系型数据库
(二十一)MySQL之高并发大流量情况下海量数据分库分表的正确姿势
从最初开设《全解MySQL专栏》到现在,共计撰写了二十个大章节详细讲到了MySQL各方面的进阶技术点,从最初的数据库架构开始,到SQL执行流程、库表设计范式、索引机制与原理、事务与锁机制剖析、日志与内存详解、常用命令与高级特性、线上调优与故障排查.....,似乎涉及到了MySQL的方方面面。但到此为止就黔驴技穷了吗?答案并非如此,以《MySQL特性篇》为分割线,整个MySQL专栏从此会进入“高可用”阶段的分析,即从上篇之后会开启MySQL的新内容,主要讲述分布式、高可用、高性能方面的讲解。
254 1
|
4月前
|
算法 搜索推荐 NoSQL
面试题MySQL问题之分库分表后的富查询问题处理如何解决
面试题MySQL问题之分库分表后的富查询问题处理如何解决
49 3
|
4月前
|
算法 关系型数据库 MySQL
MySQL分库分表
【7月更文挑战第11天】分库分表策略涉及数据源、库和表的划分,如订单表可能分布于多层结构中。面试时,主键生成是关键点。自增主键在不分库分表时适用,但在分表场景下会导致冲突。例如,按`buyer_id % 2`分两张表,自增ID无法保证全局唯一。因此,需要全局唯一且能自增的ID,如雪花算法,兼顾性能和高并发需求。
39 1
|
4月前
|
SQL 关系型数据库 MySQL
mysql面试之分库分表总结
mysql面试之分库分表总结
76 0
|
6月前
|
存储 关系型数据库 MySQL
【MySQL系列笔记】分库分表
分库分表是一种数据库架构设计的方法,用于解决大规模数据存储和处理的问题。 分库分表可以简单理解为原来一个表存储数据现在改为通过多个数据库及多个表去存储,这就相当于原来一台服务器提供服务现在改成多台服务器组成集群共同提供服务。
188 8
|
5月前
|
算法 Java 数据库连接
【分库分表】基于mysql+shardingSphere的分库分表技术
【分库分表】基于mysql+shardingSphere的分库分表技术
178 0