助力 AI 技术共享,蚂蚁开源又一核心技术“因果学习系统 OpenASCE”

简介: 技术开源是蚂蚁集团的重要技术战略,我们希望通过开源建立起开放、包容的技术生态,让更多人共享技术红利。

当地时间 12 月 10 日,机器学习和人工智能领域的顶级国际会议 NeurIPS (Neural Information Processing Systems) 在美国路易斯安那州新奥尔良市开幕,来自全球产业界和学术领域的人工智能专家齐聚一堂。

首个分布式全链路因果学习系统 OpenASCE
大会第一天,蚂蚁集团在主题为“知识增强 AI 在垂直行业的应用探索”的研讨会上正式开源了业界首个分布式全链路因果学习系统 OpenASCE (Open All-Scale Causal Engine) 。

项目 GitHub:https://github.com/Open-All-Scale-Causal-Engine/OpenASCE

0109.1.png

因果推断主要研究如何从数据中推断因果关系,是数据科学领域的重要分支,而传统的机器学习则主要依赖数据中的相关关系。融合因果推断和机器学习可以同时发挥两者的强项,我们称之为因果学习。因果学习作为一种深入理解数据和决策背后关系的技术,在数据驱动的运营和决策中扮演着重要的角色。

OpenASCE 根植于蚂蚁集团多年积累的实践经验和技术突破,相较于业界已有的一些开源框架,支持全链路大规模因果学习,包含因果发现、因果效应估计和归因,覆盖了因果各个领域的相应实现。在因果发现上,OpenASCE 支持分布式贝叶斯网络结构搜索,能够处理百节点百万样本数据;同时支持基于连续优化的因果发现,支持万级节点亿级样本数据。

OpenASCE 实现的大规模分布式因果纠偏树可以在 4 小时内完成 1 亿样本的训练任务,是业界唯一的分布式因果提升树实现。此外,OpenASCE 还沉淀了 20 多个工业级因果学习算法,包括 15 个以上因果技术和深度学习结合的因果表征学习方法,有效降低了因果技术的工业应用门槛,在蚂蚁集团内部多个场景实现了规模化应用。

0109.2.png

在信贷风控领域,通过 OpenASCE 的因果学习方法,可以更准确地识别出风险因素和客户行为之间的因果关系,大幅提高了风险控制的精度和效率。在营销优化方面,OpenASCE 能够帮助营销人员有效寻找“营销敏感人群”,提升业务指标。在推荐场景中,因果推断可以帮助机器学习纠正数据中的偏置,去除伪相关,学习更稳定的因果关系。

开源开放,共建社区

作为一家科技公司,蚂蚁集团将 OpenASCE 开源,为业界提供一套大规模、高性能的因果学习技术,并通过开源吸引全球开发者共同参与项目的建设和完善,促进全链路因果学习系统领域的发展和创新。

技术开源是蚂蚁集团的重要技术战略,我们希望通过开源建立起开放、包容的技术生态,让更多人共享技术红利。

截至目前,蚂蚁集团已在数据库、云原生、中间件等基础软件领域开源了 1700 多个仓库、积累了 100 多个社区头部开源项目。《COPU2022 中国开源发展蓝皮书》显示,蚂蚁开源影响力排名国内前三,其中重点开源的 9 大技术均为支撑支付宝的核心技术。

相关文章
|
6天前
|
人工智能 移动开发 前端开发
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
蚂蚁团队推出的AI前端研发平台WeaveFox,能够根据设计图直接生成前端源代码,支持多种应用类型和技术栈,提升开发效率和质量。本文将详细介绍WeaveFox的功能、技术原理及应用场景。
310 66
WeaveFox:蚂蚁集团推出 AI 前端智能研发平台,能够根据设计图直接生成源代码,支持多种客户端和技术栈
|
4天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
6天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
62 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
1天前
|
人工智能 自然语言处理 并行计算
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。
27 1
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在电子商务中的个性化推荐系统:驱动用户体验升级
AI在电子商务中的个性化推荐系统:驱动用户体验升级
46 17
|
4天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
34 13
|
6天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
3天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
2天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
70 10