死锁检测组件

简介: 死锁检测组件

一.死锁存在的条件

死锁,是指多个线程或者进程在运行过程中因争夺资源而造成的一种僵局,当进程或者线程处于这种僵持状态,若无外力作用,它们将无法再向前推进。如下图所示,线程 A 想获取线程 B 的锁,线程 B 想获取线程 C 的锁,线程 C 想获取线程 D 的锁,线程 D 想获取线程 A 的 锁,从而构建了一个资源获取环。

死锁的存在是因为有资源获取环的存在,所以只要能检测出资源获取环,就等同于检测出 死锁的存在。

二.死锁检测实现的原理

资源获取环可以采用图来存储,使用有向图来存储。线程 A 获取线程 B 已占用的锁,则为线程 A 指向线程 B。如何为线程 B 已占用的锁?运行过程线程 B 获取成功的锁。 检测的原理采用另一个线程定时对图进程检测是否有环的存在。如果存在说明有死锁。

hook做法

1 定义一个和系统函数一样的函数类型

2 实现目标函数   函数名一致

3 void *dlsym(void *handle, const char *symbol);

图的做法:

1 当线程调用lock加锁的时候新增节点。

2 当线程调用lock并且检测出mutex已经被其他线程占用的时候新增边。

测试代码示例

#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#define THREAD_NUM      10
typedef unsigned long int uint64;
typedef int (*pthread_mutex_lock_t)(pthread_mutex_t *mutex);
pthread_mutex_lock_t pthread_mutex_lock_f;
typedef int (*pthread_mutex_unlock_t)(pthread_mutex_t *mutex);
pthread_mutex_unlock_t pthread_mutex_unlock_f;
#if 1 // graph
#define MAX   100
enum Type {PROCESS, RESOURCE};
struct source_type {
  uint64 id;
  enum Type type;
  uint64 lock_id;
  int degress;
};
struct vertex {
  struct source_type s;
  struct vertex *next;
};
struct task_graph {
  struct vertex list[MAX];
  int num;
  struct source_type locklist[MAX];
  int lockidx;
  pthread_mutex_t mutex;
};
struct task_graph *tg = NULL;
int path[MAX+1];
int visited[MAX];
int k = 0;
int deadlock = 0;
struct vertex *create_vertex(struct source_type type) {
  struct vertex *tex = (struct vertex *)malloc(sizeof(struct vertex ));
  tex->s = type;
  tex->next = NULL;
  return tex;
}
int search_vertex(struct source_type type) {
  int i = 0;
  for (i = 0;i < tg->num;i ++) {
    if (tg->list[i].s.type == type.type && tg->list[i].s.id == type.id) {
      return i;
    }
  }
  return -1;
}
void add_vertex(struct source_type type) {
  if (search_vertex(type) == -1) {
    tg->list[tg->num].s = type;
    tg->list[tg->num].next = NULL;
    tg->num ++;
  }
}
int add_edge(struct source_type from, struct source_type to) {
  add_vertex(from);
  add_vertex(to);
  struct vertex *v = &(tg->list[search_vertex(from)]);
  while (v->next != NULL) {
    v = v->next;
  }
  v->next = create_vertex(to);
}
int verify_edge(struct source_type i, struct source_type j) {
  if (tg->num == 0) return 0;
  int idx = search_vertex(i);
  if (idx == -1) {
    return 0;
  }
  struct vertex *v = &(tg->list[idx]);
  while (v != NULL) {
    if (v->s.id == j.id) return 1;
    v = v->next;
  }
  return 0;
}
int remove_edge(struct source_type from, struct source_type to) {
  int idxi = search_vertex(from);
  int idxj = search_vertex(to);
  if (idxi != -1 && idxj != -1) {
    struct vertex *v = &tg->list[idxi];
    struct vertex *remove;
    while (v->next != NULL) {
      if (v->next->s.id == to.id) {
        remove = v->next;
        v->next = v->next->next;
        free(remove);
        break;
      }
      v = v->next;
    }
  }
}
void print_deadlock(void) {
  int i = 0;
  printf("deadlock : ");
  for (i = 0;i < k-1;i ++) {
    printf("%ld --> ", tg->list[path[i]].s.id);
  }
  printf("%ld\n", tg->list[path[i]].s.id);
}
int DFS(int idx) {
  struct vertex *ver = &tg->list[idx];
  if (visited[idx] == 1) {
    path[k++] = idx;
    print_deadlock();
    deadlock = 1;
    return 0;
  }
  visited[idx] = 1;
  path[k++] = idx;
  while (ver->next != NULL) {
    DFS(search_vertex(ver->next->s));
    k --;
    ver = ver->next;
  }
  return 1;
}
int search_for_cycle(int idx) {
  struct vertex *ver = &tg->list[idx];
  visited[idx] = 1;
  k = 0;
  path[k++] = idx;
  while (ver->next != NULL) {
    int i = 0;
    for (i = 0;i < tg->num;i ++) {
      if (i == idx) continue;
      visited[i] = 0;
    }
    for (i = 1;i <= MAX;i ++) {
      path[i] = -1;
    }
    k = 1;
    DFS(search_vertex(ver->next->s));
    ver = ver->next;
  }
}
#if 0
int main() {
  tg = (struct task_graph*)malloc(sizeof(struct task_graph));
  tg->num = 0;
  struct source_type v1;
  v1.id = 1;
  v1.type = PROCESS;
  add_vertex(v1);
  struct source_type v2;
  v2.id = 2;
  v2.type = PROCESS;
  add_vertex(v2);
  struct source_type v3;
  v3.id = 3;
  v3.type = PROCESS;
  add_vertex(v3);
  struct source_type v4;
  v4.id = 4;
  v4.type = PROCESS;
  add_vertex(v4);
  struct source_type v5;
  v5.id = 5;
  v5.type = PROCESS;
  add_vertex(v5);
  add_edge(v1, v2);
  add_edge(v2, v3);
  add_edge(v3, v4);
  add_edge(v4, v5);
  add_edge(v3, v1);
  search_for_cycle(search_vertex(v1));
}
#endif
#endif
void check_dead_lock(void) {
  int i = 0;
  deadlock = 0;
  for (i = 0;i < tg->num;i ++) {
    if (deadlock == 1) break;
    search_for_cycle(i);
  }
  if (deadlock == 0) {
    printf("no deadlock\n");
  }
}
static void *thread_routine(void *args) {
  while (1) {
    sleep(5);
    check_dead_lock();
  }
}
void start_check(void) {
  tg = (struct task_graph*)malloc(sizeof(struct task_graph));
  tg->num = 0;
  tg->lockidx = 0;
  pthread_t tid;
  pthread_create(&tid, NULL, thread_routine, NULL);
}
#if 1
int search_lock(uint64 lock) {
  int i = 0;
  for (i = 0;i < tg->lockidx;i ++) {
    if (tg->locklist[i].lock_id == lock) {
      return i;
    }
  }
  return -1;
}
int search_empty_lock(uint64 lock) {
  int i = 0;
  for (i = 0;i < tg->lockidx;i ++) {
    if (tg->locklist[i].lock_id == 0) {
      return i;
    }
  }
  return tg->lockidx;
}
#endif
int inc(int *value, int add) {
  int old;
  __asm__ volatile(
    "lock;xaddl %2, %1;"
    : "=a"(old)
    : "m"(*value), "a" (add)
    : "cc", "memory"
  );
  return old;
}
void print_locklist(void) {
  int i = 0;
  printf("print_locklist: \n");
  printf("---------------------\n");
  for (i = 0;i < tg->lockidx;i ++) {
    printf("threadid : %ld, lockid: %ld\n", tg->locklist[i].id, tg->locklist[i].lock_id);
  }
  printf("---------------------\n\n\n");
}
void lock_before(uint64 thread_id, uint64 lockaddr) {
  int idx = 0;
  // list<threadid, toThreadid>
  for(idx = 0;idx < tg->lockidx;idx ++) {
    if ((tg->locklist[idx].lock_id == lockaddr)) {
      struct source_type from;
      from.id = thread_id;
      from.type = PROCESS;
      add_vertex(from);
      struct source_type to;
      to.id = tg->locklist[idx].id;
      tg->locklist[idx].degress++;
      to.type = PROCESS;
      add_vertex(to);
      if (!verify_edge(from, to)) {
        add_edge(from, to); // 
      }
    }
  }
}
void lock_after(uint64 thread_id, uint64 lockaddr) {
  int idx = 0;
  if (-1 == (idx = search_lock(lockaddr))) {  // lock list opera 
    int eidx = search_empty_lock(lockaddr);
    tg->locklist[eidx].id = thread_id;
    tg->locklist[eidx].lock_id = lockaddr;
    inc(&tg->lockidx, 1);
  } else {
    struct source_type from;
    from.id = thread_id;
    from.type = PROCESS;
    struct source_type to;
    to.id = tg->locklist[idx].id;
    tg->locklist[idx].degress --;
    to.type = PROCESS;
    if (verify_edge(from, to))
      remove_edge(from, to);
    tg->locklist[idx].id = thread_id;
  }
}
void unlock_after(uint64 thread_id, uint64 lockaddr) {
  int idx = search_lock(lockaddr);
  if (tg->locklist[idx].degress == 0) {
    tg->locklist[idx].id = 0;
    tg->locklist[idx].lock_id = 0;
    //inc(&tg->lockidx, -1);
  }
}
int pthread_mutex_lock(pthread_mutex_t *mutex) {
    pthread_t selfid = pthread_self(); //
  lock_before(selfid, (uint64)mutex);
    pthread_mutex_lock_f(mutex);
  lock_after(selfid, (uint64)mutex);
}
int pthread_mutex_unlock(pthread_mutex_t *mutex) {
  pthread_t selfid = pthread_self();
    pthread_mutex_unlock_f(mutex);
  unlock_after(selfid, (uint64)mutex);
}
static int init_hook() {
    pthread_mutex_lock_f = dlsym(RTLD_NEXT, "pthread_mutex_lock");
    pthread_mutex_unlock_f = dlsym(RTLD_NEXT, "pthread_mutex_unlock");
}
#if 1  //debug
pthread_mutex_t mutex_1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_2 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_3 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_4 = PTHREAD_MUTEX_INITIALIZER;
void *thread_rountine_1(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 1 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_1);
    sleep(1);
    pthread_mutex_lock(&mutex_2);
    pthread_mutex_unlock(&mutex_2);
    pthread_mutex_unlock(&mutex_1);
    return (void *)(0);
}
void *thread_rountine_2(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 2 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_2);
    sleep(1);
    pthread_mutex_lock(&mutex_3);
    pthread_mutex_unlock(&mutex_3);
    pthread_mutex_unlock(&mutex_2);
    return (void *)(0);
}
void *thread_rountine_3(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 3 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_3);
    sleep(1);
    pthread_mutex_lock(&mutex_4);
    pthread_mutex_unlock(&mutex_4);
    pthread_mutex_unlock(&mutex_3);
    return (void *)(0);
}
void *thread_rountine_4(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 4 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_4);
    sleep(1);
    pthread_mutex_lock(&mutex_1);
    pthread_mutex_unlock(&mutex_1);
    pthread_mutex_unlock(&mutex_4);
    return (void *)(0);
}
int main()
{
    init_hook();         // 集成到项目只需要调用这2个函数
  start_check();       // 
  printf("start_check\n");
    pthread_t tid1, tid2, tid3, tid4;
    pthread_create(&tid1, NULL, thread_rountine_1, NULL);
    pthread_create(&tid2, NULL, thread_rountine_2, NULL);
    pthread_create(&tid3, NULL, thread_rountine_3, NULL);
    pthread_create(&tid4, NULL, thread_rountine_4, NULL);
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);
    pthread_join(tid4, NULL);
    return 0;
}
#endif
目录
相关文章
|
4月前
|
NoSQL Java Redis
基本锁的理解(待补充)
可重入锁允许同一线程多次获取同一锁而不致死锁;不可重入锁则不允许递归锁定,连续调用会致死锁。死锁发生在多进程争夺资源导致僵局。读锁允许多线程并发读取,写锁则排他。自旋锁通过循环等待获取锁;共享锁用于只读操作;排它锁用于数据修改;闭锁延迟线程直至状态终止;信号量控制对资源的访问,未获信号量的线程会进入睡眠状态。
|
4月前
|
Java 测试技术 PHP
父子任务使用不当线程池死锁怎么解决?
在Java多线程编程中,线程池有助于提升性能与资源利用效率,但若父子任务共用同一池,则可能诱发死锁。本文通过一个具体案例剖析此问题:在一个固定大小为2的线程池中,父任务直接调用`outerTask`,而`outerTask`再次使用同一线程池异步调用`innerTask`。理论上,任务应迅速完成,但实际上却超时未完成。经由`jstack`输出的线程调用栈分析发现,线程陷入等待状态,形成“死锁”。原因是子任务需待父任务完成,而父任务则需等待子任务执行完毕以释放线程,从而相互阻塞。此问题在测试环境中不易显现,常在生产环境下高并发时爆发,重启或扩容仅能暂时缓解。
|
存储 监控 算法
实现死锁检测组件
实现死锁检测组件
64 0
|
7月前
|
存储 监控 程序员
线程死锁检测组件逻辑与源码
线程死锁检测组件逻辑与源码
86 2
|
7月前
|
数据处理 数据库
死锁检测组件实现
死锁检测组件实现
42 0
|
7月前
|
存储 安全 C语言
死锁检测组件原理及代码实现
死锁检测组件原理及代码实现
|
算法 调度
死锁原因及死锁检测组件的实现
死锁原因及死锁检测组件的实现
132 0
|
算法 安全 Java
死锁的原理
之前在学校学习过程中,很少写多进程的代码,虽然操作系统中学过死锁相关的内容,但考试过后也基本就忘记了,后来自己也遇到过有些多进程死锁的情况,再加上看了有些资料,对死锁才算是有了有些深入的理解。
85 0
|
关系型数据库 中间件 MySQL
上手全局锁,死锁
上手全局锁,死锁
上手全局锁,死锁

热门文章

最新文章