Leetcode算法系列| 1. 两数之和(四种解法)

简介: Leetcode算法系列| 1. 两数之和(四种解法)


1.题目

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。

  • 示例1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
  • 示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
  • 示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
  • 提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案

2.题解

解法一:暴力枚举

最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。

当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。

public int[] TwoSum(int[] nums, int target)
    {
        int n=nums.Length;
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                if (nums[i] + nums[j] == target)
                {
                    return new int[] { i, j };
                }
            }
        }
        return new int[] { 0, 0 };
    }

  • 时间复杂度: O(n^2) ,空间复杂度: O(1)

解法二:哈希表解法

注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。

使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。

这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

public int[] TwoSum(int[] nums, int target) {
        Dictionary<int, int> twoSum = new Dictionary<int, int>();
        for (int i = 0; i < nums.Length; i++)
        {
            if(twoSum.ContainsKey(target-nums[i]))
            {
                return new int[] {twoSum[target - nums[i]], i};
            }
            else    
            {
                twoSum[nums[i]] = i;
            }
        }
        return new int[] {0, 0};
    }

  • 时间复杂度:O(n),空间复杂度:O(n)。

解法三:双指针(有序状态)

public int[] towSum(int[] nums, int target)
    {
        int left = 0;
        int right = nums.Length - 1;
        for (int i = 0; i < nums.Length; i++)
        {
            if (nums[left] + nums[right] > target)
            {
                right--;
            }
            else if (nums[left] + nums[right] < target)
            {
                left++;
            }
            else
            {
                return new int[] { left, right };
            }
        }
        return new int[] { };
    }
  • 时间复杂度:O(nlogn),空间复杂度:O(n)。

解法四:二分查找(有序状态)

public int[] towSum(int[] nums, int target)
 {
     for (int i = 0; i < nums.Length; i++)
     {
         int low = i + 1;
         int high = nums.Length - 1;
         while (low <= high)
         {
             int mid = (high - low) / 2 + low;
             if (nums[mid] > target - nums[i])
             {
                 high = mid - 1;
             }
             else if (nums[mid] < target - nums[i])
             {
                 low = mid + 1;
             }
             else
             {
                 return new int[] { i, mid };
             }
         }
     }
     return new int[] { };
 }
  • 时间复杂度:O(nlogn),空间复杂度:O(n)。
相关文章
|
2月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
43 0
|
1月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
29 2
|
2月前
|
C++
Leetcode第一题(两数之和)
这篇文章介绍了解决LeetCode第一题“两数之和”的两种方法:暴力法和哈希表法,并提供了相应的C++代码实现。
41 0
Leetcode第一题(两数之和)
|
2月前
|
存储 C++ 容器
【LeetCode 13】1.两数之和
【LeetCode 13】1.两数之和
16 0
|
4月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
80 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
4月前
|
存储 索引
LeetCode------两数之和(3)【数组】
这篇文章介绍了LeetCode上的"两数之和"问题,提供了两种解法:一种是暴力求解法,通过双层循环遍历数组元素对查找两数之和为目标值的索引,时间复杂度为O(n^2);另一种是使用HashMap优化,通过存储元素值和索引,时间复杂度降低到O(n)。
LeetCode------两数之和(3)【数组】
|
4月前
|
算法
LeetCode第1题两数之和
该文章介绍了 LeetCode 第 1 题两数之和的解法,通过使用 HashMap 来记录数组元素及其下标,以 O(n)的时间复杂度解决问题。
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
124 2