K-最近邻算法(KNN)是什么算法?

简介: K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别。KNN算法的工作原理简单且直观,当需要将一个测试样本分类时,它首先会计算测试样本与所有训练样本之间的距离,然后根据距离的递增关系进行排序。接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。

K-最近邻算法(K-Nearest Neighbor,KNN)是一种经典的有监督学习方法,也可以被归为懒惰学习(Lazy Learning)方法。它基于“物以类聚”的原理,假设样本之间的类别距离越近则它们越有可能是同一类别。
KNN算法的工作原理简单且直观,当需要将一个测试样本分类时,它首先会计算测试样本与所有训练样本之间的距离,然后根据距离的递增关系进行排序。接着,它会选择距离最小的前K个样本,并统计这K个最近邻样本中每个样本出现的次数。最后,它会选择出现频率最高的类标号作为未知样本的类标号。
在KNN算法中,K值的选择是关键。如果K值较小,只有当需要进行预测的样本和训练的样本较接近时,才能有较好的效果。如果K值较大,则算法分类的近似误差增大,与输入样本距离较远的样本也会对结果产生作用。

image.png

KNN算法的工作过程如下:
1.计算待分类样本与训练集中所有样本之间的距离,常用的距离度量方法包括欧氏距离、曼哈顿距离等。
2.选择K个距离最近的样本,即K个最近邻。
3.对于分类问题,统计K个最近邻中不同类别的样本数量,并将待分类样本归为数量最多的那个类别。
4.对于回归问题,计算K个最近邻的平均值或加权平均值,并将其作为待分类样本的预测值。
KNN算法的优点是简单易理解、实现容易,并且对于非线性问题具有较好的表现。此外,KNN算法可以适应新的训练数据,不需要重新训练模型。KNN算法既能够用来解决分类问题,也能够用来解决回归问题。在处理分类问题时,KNN通过扫描训练样本集找到与测试样本最相似的训练样本,并依据该样本的类别进行投票确定测试样本的类别。在处理回归问题时,KNN则通过计算训练样本与测试样本的相似程度进行加权投票。
然而,KNN算法的缺点包括计算复杂度高,需要存储全部训练样本,对于大规模数据集会消耗较多的内存和时间。此外,KNN算法对于样本分布不平衡的情况可能产生偏见,并且对于高维数据和噪声数据的处理能力相对较弱。
需要注意的是,由于KNN算法需要计算所有训练样本与测试样本之间的距离,因此当训练样本集较大时,其计算成本会较高。为了解决这个问题,可以考虑使用一些优化的距离计算方法,如树结构算法等。同时,KNN算法的方差(Variance)往往较高,容易受到训练集大小和噪声的影响,因此在使用时需要注意过拟合和欠拟合的问题。
在应用方面,KNN算法常用于推荐系统、图像识别、医学诊断等领域。

相关文章
|
2月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
2月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
3月前
|
算法 Python
KNN
【9月更文挑战第11天】
61 13
|
3月前
|
算法 大数据
K-最近邻(KNN)
K-最近邻(KNN)
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
5月前
knn增强数据训练
【7月更文挑战第27天】
46 10
|
5月前
|
机器人 计算机视觉 Python
K-最近邻(KNN)分类器
【7月更文挑战第26天】
51 8
|
5月前
创建KNN类
【7月更文挑战第22天】创建KNN类。
38 8
|
5月前
knn增强数据训练
【7月更文挑战第28天】
51 2
|
5月前
|
机器学习/深度学习 数据采集 算法
Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战
Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

热门文章

最新文章