四、RabbitMQ如何保证消息丢失

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 四、RabbitMQ如何保证消息丢失

RabbitMQ消息丢失的情况

第一种:生产者弄丢了数据。生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。

第二种:RabbitMQ 弄丢了数据。MQ还没有持久化自己挂了
第三种:消费端弄丢了数据。刚消费到,还没处理,结果进程挂了,比如重启了。

解决方案

一:针对生产者
方案1.开启RabbitMQ事务
可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务channel.txSelect,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务channel.txRollback,然后重试发送消息;如果收到了消息,那么可以提交事务channel.txCommit。

// 开启事务
channel.txSelect
    try {
          // 这里发送消息
    } catch (Exception e) {
          channel.txRollback
    // 这里再次重发这条消息
    }
// 提交事务
channel.txCommit

缺点:
但是问题是,RabbitMQ 事务机制是同步的,你提交一个事务之后会阻塞在那儿,采用这种方式基本上吞吐量会下来,因为太耗性能。

方案2 使用confirm机制
事务机制和 confirm 机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是 confirm 机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息 RabbitMQ 接收了之后会异步回调你的一个接口通知你这个消息接收到了。

二、针对RabbitMQ

1.消息持久化

2.设置集群镜像模式

3.消息补偿机制

第一种:消息持久化

RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失。

所以就要对消息进行持久化处理。如何持久化,下面具体说明下:

要想做到消息持久化,必须满足以下三个条件,缺一不可。

1) Exchange 设置持久化

2)Queue 设置持久化

3)Message持久化发送:发送消息设置发送模式deliveryMode=2,代表持久化消息

第二种:设置集群镜像模式

我们先来介绍下RabbitMQ三种部署模式:

1)单节点模式:最简单的情况,非集群模式,节点挂了,消息就不能用了。业务可能瘫痪,只能等待。
2)普通模式:默认的集群模式,某个节点挂了,该节点上的消息不能用,有影响的业务瘫痪,只能等待节点恢复重启可用(必须持久化消息情况下)。
3)镜像模式:把需要的队列做成镜像队列,存在于多个节点,属于RabbitMQ的HA方案

为什么设置镜像模式集群,因为队列的内容仅仅存在某一个节点上面,不会存在所有节点上面,所有节点仅仅存放消息结构和元数据。下面自己画了一张图介绍普通集群丢失消息情况:

如果想解决上面途中问题,保证消息不丢失,需要采用HA 镜像模式队列。

下面介绍下三种HA策略模式:

1)同步至所有的
2)同步最多N个机器
3)只同步至符合指定名称的nodes

命令处理HA策略模版:rabbitmqctl set_policy [-p Vhost] Name Pattern Definition [Priority]

1)为每个以“rock.wechat”开头的队列设置所有节点的镜像,并且设置为自动同步模式

rabbitmqctl set_policy ha-all "^rock.wechat" '{"ha-mode":"all","ha-sync-mode":"automatic"}'
rabbitmqctl set_policy -p rock ha-all "^rock.wechat" '{"ha-mode":"all","ha-sync-mode":"automatic"}'

2)为每个以“rock.wechat.”开头的队列设置两个节点的镜像,并且设置为自动同步模式

rabbitmqctl set_policy -p rock ha-exacly "^rock.wechat" \
'{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'

3)为每个以“node.”开头的队列分配指定的节点做镜像

rabbitmqctl set_policy ha-nodes "^nodes\." \
'{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'

但是:HA 镜像队列有一个很大的缺点就是:   系统的吞吐量会有所下降

第三种:消息补偿机制

为什么还要消息补偿机制呢?难道消息还会丢失,没错,系统是在一个复杂的环境,不要想的太简单了,虽然以上的三种方案,基本可以保证消息的高可用不丢失的问题,

但是作为有追求的程序员来讲,要绝对保证我的系统的稳定性,有一种危机意识。

比如:持久化的消息,保存到硬盘过程中,当前队列节点挂了,存储节点硬盘又坏了,消息丢了,怎么办?

产线网络环境太复杂,所以不知数太多,消息补偿机制需要建立在消息要写入DB日志,发送日志,接受日志,两者的状态必须记录。

然后根据DB日志记录check 消息发送消费是否成功,不成功,进行消息补偿措施,重新发送消息处理。

三、针对消费者

ACK确认机制

多个消费者同时收取消息,比如消息接收到一半的时候,一个消费者死掉了(逻辑复杂时间太长,超时了或者消费被停机或者网络断开链接),如何保证消息不丢?

这个使用就要使用Message acknowledgment 机制,就是消费端消费完成要通知服务端,服务端才把消息从内存删除。

这样就解决了,及时一个消费者出了问题,没有同步消息给服务端,还有其他的消费端去消费,保证了消息不丢的case。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
消息中间件 NoSQL Java
【RabbitMQ】RabbitMQ如何做到保证消息100%不丢失?
【RabbitMQ】RabbitMQ如何做到保证消息100%不丢失?
463 0
|
3月前
|
消息中间件 存储 RocketMQ
Rocketmq如何保证消息不丢失
文章分析了RocketMQ如何通过生产者端的同步发送与重试机制、Broker端的持久化存储与消息重试投递策略、以及消费者端的手动提交ack与幂等性处理,来确保消息在整个传输和消费过程中的不丢失。
|
5天前
|
消息中间件
使用RabbitMQ如何保证消息不丢失 ?
RabbitMQ通过发布者确认、回执机制、消息持久化及消费者确认等方案,确保消息从发送到接收的每个环节都能有效防止丢失。即便如此,特殊情况下仍可能丢失,如系统故障等。为此,可设计消息状态表,记录消息ID、内容、交换机、路由键、发送时间和签收状态等,结合定时任务检查并重发未签收消息,以进一步提升消息传输的可靠性。
20 1
|
3月前
|
消息中间件 Java 开发者
如何避免RabbitMQ消息丢失?
本文探讨了RabbitMQ中如何避免消息丢失的问题。在默认情况下,RabbitMQ并不保证消息的持久性,但提供了多种机制来确保消息的可靠传输与处理。文章分析了消息可能丢失的关键环节,并介绍了相应的保证机制:发布者确认交换机已接收消息、确认队列接收消息、队列及消息的持久化,以及消费者成功处理消息后的确认。通过Java代码示例展示了如何在实际应用中实现这些机制。最终,确保了消息在从生产到消费的整个流程中的可靠性。
|
6月前
|
消息中间件 存储 程序员
RabbitMQ消息丢失的场景,如何保证消息不丢失?(详细讲解,一文看懂)
RabbitMQ消息丢失的场景,如何保证消息不丢失?(详细讲解,一文看懂)
330 0
RabbitMQ消息丢失的场景,如何保证消息不丢失?(详细讲解,一文看懂)
|
消息中间件
rabbitmq重复确认导致消息丢失
rabbitmq重复确认导致消息丢失
|
消息中间件 存储 Kafka
如何保证 RocketMQ 不丢失消息
如何保证 RocketMQ 不丢失消息
239 0
|
消息中间件 存储 运维
优雅地处理RabbitMQ中的消息丢失
优雅地处理RabbitMQ中的消息丢失
|
消息中间件 存储
RabbitMQ如何保证消息发送成功
RabbitMQ如何保证消息发送成功
143 0
RabbitMQ如何保证消息发送成功
|
消息中间件 存储 缓存
【MQ】Kafka如何保证消息不丢失
【MQ】Kafka如何保证消息不丢失
296 0
下一篇
无影云桌面